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Abstract 

A loophole-free Bell experiment requiring detection efficiency as low as 67% is proposed. The experiment uses different 
frequency photon interference of fourth order at an asymmetrical heam splitter and a resulting non-maximal entanglement. 

PACS: 03.65.B~; 42.50.Wm 

No Bell experiment carried out so far was able to conclusively disprove hidden-variable theories without 
additional assumptions [ 11. Cascade photon pair experiments have to rely on the no enhancement assumption 
(made by Clauser and Horne [2,3]: a subset of a total set of events gives the same sfaristics as the set itself) 
because the directions of the photons in the process (which is a three-body decay) are uncontrollable. Fourth 
order interference, on the other hand, provides directional photon correlation [4-l 1 ] but it was believed that one 
has to discard 50% of the counts which correspond to photons emerging from the same sides of a beam splitter. 
We have recently shown that this is not the case for a polarization experiment which would use birefringent 
polarizers but also that such an experiment at a single beam splitter would require 85.8% overall efficiency, 
i.e., in effect, more than 92% detector efficiency which is still not available [lo]. Therefore, we devised a 
preselection setup which permits lowering of the required efficiency down to 67% in the ideal limit [lo]. 
The latter experiment reveals non-locality as a property of selection but for its primary purpose of enabling a 
conclusive Bell experiment a simplified version would be welcome and this is what we aim at in this paper. 
Kwiat et al. [7] also aimed at 67% efficiency by means of three type II crystals that down-convert onto a beam 
splitter but they failed to recognize (as shown in Ref. [ lo] ) that with the attenuation of one of the incident 
beams (as required in the proposal) photons start to emerge from the same sides of the second beam splitter 
contrary to the symmetrical case. 
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Fig. I, Outline of the experiment. Single and coincidence counts are collected simultaneously by appropriate computer gates coupled with 

the laser beam timing. Wollaston prisms PI, P2 are at the same time birefringent polarizers and frequency selectors. The angles between 

ordinary (as well as extraordinary) beams of different colours (o I and 02) ate exaggerated to avoid the graphical presentation of additional 

prisms and wedge shaped mirrors which would conclusively separate them. The pinholes determining the frequencies (wt and wz) coming 

to the beam splitter BS are positioned as far away from the crystal as possible. ‘The setup is completely symmetrical so that all paths from 

the middle of the crystal to the detectors have the same time-of&ht. 

In this paper we use a non-classical property of the fourth order interference of photons of different colours 
(obtained by Larchuk et al. [ 121 and by Ou and Mandel [ 131) in order to devise an experiment which would 
close the last two loopholes in the Bell theorem proof: the no enhancement one and the insufficient detection 
efficiency one. The proposal is physically simpler and apparently easier to carry out than the previous two 
proposals put forward in Refs. [ 7,5,8 1. 

In the experiment we use spin (polarization) interference of polarized photons at a low-reflectivity beam 
splitter, the theory of which we recently elaborated in Ref. [ 61. What gave us the clue was Eberhard’s efficiency 
lowering to 67% for a non-maximal entanglement [ 14 1. We achieved a non-maximal entanglement by means of 
the r < 1 ratio function of the transmission coefficients of an asymmetrical beam splitter and not by attenuating 
one of the incident beams. We neither use the Eberhard special form of the Bell inequality nor his special 
condition ( “choose the efJicciency first”) imposed on the optimization procedure for finding the angles which 
violate the inequality. Both of them are thus - as a by-product of our result - unnecessary. On the other hand, 
in Ref. [IO] we have explicitly shown that the Eberhard form of the Bell inequality gives exactly the same 
results as its usual form. 

A schematic representation of the experiment is shown in Fig. 1. A subpicosecond laser beam of frequency 
o. pumps up a non-linear NL crystal of type I at a repetition rate of 100 MHz (corresponding to nanosecond 
time windows, i.e., computer gates) and down-converts into pairs of signal and idler photons of frequencies wi 
and w2, respectively, which satisfy the following energy and momentum conservation conditions: wg = o1 + w2 
and k. = k, + k2 [ 151. By means of two pairs of asymmetrically positioned pinholes - as shown in Fig. 1 - 
we select sidebands containing idler and signal photons of frequencies WI and w:! = 00 - 01. Down-converted 
pairs coming from the crystals do not have definite phases [ 161 with respect to each other and consequently 
interference of the second order does not occur. Signal and idler photons from each pair are parallel polarized 
and isolated, they would not emerge from an entangled beam splitter [ 61. However, if the pairs are prepared 
in superposition so that effectively only two photons come from the crystal - from which pair we cannot 
know of course - they emerge non-maximally entangled from an asymmetrical beam splitter if the pairs are 
perpendicularly polarized to each other by a 90’ polarization rotator [ 41. Due to the ultrashort pumping beam 
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which by appropriate intensity lowering ensures an average appearance of one down-converted pair of photons at 
a time, we are able to effectively control the coincidences which occur as a property of down-conversion within 
a few femtoseconds, i.e., well within our time windows of 10 ns. On the other hand, the intensity corresponds 
to the coherence time of two pairs. In other words, two pairs of signals and idlers appear in superposition in 
the sense that we never know which one of the two appeared while the probability of having four photons as 
a result of one pumping is practically equal to zero. 

Upon emerging from the crystal we direct the photon pairs to a low-reflectivity beam splitter, with unequal 
transmission and reflection coefficients in particular directions, from its opposite sides. Photons coming out 
from the beam splitter pass through the Wollaston prisms Pl, P2 (which are at the same time birefringent 
polarizers and frequency selectors) to the detectors Dl w,, Dl,$, , Dl wl, Dl w’,, D2,, , D2;, , D2,, , D2&. We 
record the intensity (not amplitude) correlation (beating) between photons of frequencies w, and 02 which 
do not overlap [ 131 in the following way. Upon firing of three or all four counters discard the corresponding 
data because they do not belong to our set of pair events. We also discard data upon tiring of two detectors on 
the same side (e.g., Dl,,, Dlw,) because such data correspond to both photons emerging from the same side 
of the beam splitter and therefore do not belong to our entangled state. 

Since, ideally, no photon escapes a detection - thus satisfying the Santos request [l] - the probability of 
coincidental tiring of either Dl,, and D2,,,, or Dl,, and D2,, , given by Pq. (6), is then approximated by the 
following ratio between the numbers of coincidence counts, 

f(h,f92) = 
4W,, nD%,) U Ww, nDZo,)l 

n(Dl,, u Dl& U Dl,, u Dl& u D2,, u D2& u D2,, u D2&) ’ (1) 

where 81 and (32 are the orientation angles of the polarizers Pl and P2, respectively. 
The state of our two photons incoming to the beam splitter is in the ideal case of monochromatic photons 

described by ]rY) = (1/fi)(]lX)ij1.)2 + ]ly)i]ly)2), where llX) and ]lY) denote the mutually orthogonal 
photon states in the sense that if the beam splitter were removed a response to an incoming photon in state ( 1 J 
would be a “click” at the detector Dl and no “click” at the detector Dl 1 provided the birefringent polarizer 
Pl is oriented along n. We shall use the second quantization formalism following closely the results obtained 
in Refs. [6,8] where we described the action of the beam splitters, polarizers, and detectors on the photons 
using outgoing electric field operators which acted on ]ly) reducing it to a Fock vacuum state. We find that 
the photons always emerge from opposite sides of the beam splitter and never from the same sides of it. The 
photons emerge in a non-maximal singlet state. 

To describe such an action of the polarizers and detectors (Dl@, and D2,,) we start with the following 
electric field operators (cf. Eqs. (7)-( 10) of Ref. [ 6]), 

8, - (ir~,t,cos8~+~,,t,sin~~)exp[-io~(t-~1)]+i(~~x~x~o~e,+~2y~ysin8,)exp[-io~(t-~,+S~)], 

(2) 

g2= (a2~t,c0se2+a2yt?,sin82)exp[-i~2(t-71)]+i(iilx~xcose2+aly~ysin82)exp~-i02(f-71-li7)], 

(3) 

where the annihilation operators 2 describe the action of the detectors and on the photon states they act 
as follows: zliX]lX)i = IO*),, &]O,)i = IlJ,, &,1O,)i = 0, etc., where Sr corresponds to possible small 
displacements &A%- of the beam splitter BS towards the detectors Dl or D2, and where ri is the propagation 
time between the beam splitter and the detectors (equal paths between the middle of the crystal and the beam 
splitter for all photons are assumed to assure overlapping of the photons at the beam splitter). 

In a realistic experiment photons, however, cannot be taken as monochromatic and, following Hong et al. 
[ 161, Larchuk et al. [ 121, and PaviEiC and Summhammer [ 51, we assume them Gaussian-distributed around 

WI and 02, 
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5(WI~W2)(11.~)o,/1.r)wl + ~lv)w,~1Y)02)d~,d~2, 
0 0 

(4) 

where l( wi, ~2) is a weight function peaked at WI and w2 with r.m.s. widths u. In order to take into account 
the frequency responses of the polarizers, which we also assume to be Gaussian shaped, we make a Fourier 
decomposition of the electric field operators (2) and (3). We finally integrate with respect to time the mean 
value of the electric field operators and obtain the probability of joint two-photon detection by the detectors 
Dl w, and D2,, together with Dl w2 and D2,, , 

P(6$,82) = (!Pj_@k~kl&2/ly) = v2{A2 + B2 - 2ABexp[-ia2(67)2] cos[ (WI - 02)87]}, (5) 

where 

A = ( 1 /v’?) (t: cos 81 cos tYz + f: sin81 sin 6$), B = (l/&)(rZcostYi cos& + r;sinf?i sine2), 

and ~7 is an overall detection efficiency-constant characteristic of the detectors and polarizers - which for the 
experiments carried out so far was ‘at most 0.8 [ 131. (Since the efficiencies of the detectors and prisms for 
different frequencies do not differ much, we assume that all T,J are equal and therefore we replace q2 in Eq. (5) 
instead of ~71772, following Clauser and Shimony [ 31.) Assuming the positioning of BS so as to have 6~ = 0, 
the probability reads 

(6) 

where s = (~2 - r’,) /fi and r = (t; - r:) /( tz - r:). In the following, we shall limit the values of r to the 
interval [O,l] because possible negative values of r do not change the obtained results. 

On the other hand, the probability of joint detection of both photons on the same sides of the beam splitter 
is (provided u -+ 0) 

p(e,e2) =~2(t.~r,cost$c0se2+tyrysin~, sint9z)2{l +COS[(W, -02)&]}. (7) 

We see that for cos[ (01 - wz)&-] = - 1 photons never emerge from the same side of the beam splitter but 
for such a position of the beam splitter the probability (5) reduces - because of tz f r: = f; + r; = 1 - 

to iv2 cos2(8i - Bz), which requires 83% detection efficiency. Besides, the assumption u -+ 0 is not very 
realistic. It is interesting, however, that the obtained maximal singlet state does not depend on the values of 
the transmission and reflection coefficients of the beam splitter. In other words, for cos[ (wi - wz)&] = -1 
the beam splitter is “non-exisring” while for cos[ (WI - w2)Sr] = 1 it forces photons to behave completely 
non-classically. 

Let us now analyze the following Bell (Clauser-Home) inequality, 

f(ke2) - f(k@) + f(&e:) + f(&e,) 6 f(6) + f(e,), (8) 

where f( Bi , 82) given by Eq. ( 1) approaches P ( BI ,02) and f( 19: ) approaches P (0; ) which is given by 

fye;) =P(e{,oo) =~s2(c0se~2+r2sin8~2), (9) 

where P( t9{ ,‘a~) for ~7 = 1 describes ideal coincidence detection with the polarizer P2 “removed” (equal 
to ordinary and armordinary beam together). Thus f( 0; ) approaches the probability of one photon being 
detected by Dl and the other entering either D2 or D2* but without necessarily being detected by them due to 
their inefficiency. However, Dl (as well as D2) also detects counts belonging to photons emerging from the 
same side of the beam splitter whose counter-counts were not detected by the detectors from the corresponding 



M. PaviBE / Physics Letters A 209 (1995) 255-260 259 

efficiency 
Minimal sfficiencies on a beam splitter 

efficiency (%) 

Fig. 2. The surface showing the maximal violation of the Bell inequality for the optimal angles of the polarizers. All the values above the 

B = 0 plane violate the Bell inequality. 

Fig. 3. ‘I) obtained for B - 0 from Eq. ( IO). 

side again due to their inefficiency. The corresponding counts for both Dl and D2 can be obtained from 
Eq. (7) as 2( 1 - n)v( tzr$ cos2 19; + t;r$ sin2 02) N, where N is given by the denominator of Eq. ( 1). When 
we therefore subtract that many counts from the total number of singles counts registered by the computer: 
n(Dl,, UD2,,)/N we obtain f(0;) +f(&) which approximates P(e{) +P(&) given by Eq. (9). Thus we 
obtain that Eq. (8) approaches the following inequality, 

B = b’,,W2) - f’12UM;) + f’12(O:,f9;) +f’,2(8:,02) - W:) - P(O2)l G 0. 
w2 

(10) 

We achieve the greatest violation of the Bell inequality when r + 0. In order to show this, let us look at Fig. 2, 
which shows the max[ B] (r, 7) surface obtained by a computer program for appropriate optimal angles. The 
values above the B = 0 plane correspond to violations of the Bell inequality. For r = 1 we obtain max[ B] = 0 
for 77 = 0.828427 in accordance with the result of Garg and Mermin [ 171. For r --+ 0, however, we obtain a 
violation of the Bell inequality already for any efficiency greater than 67%. This is because of the special shape 
of the max[ B] surface as shown in Fig. 3. 
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