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Abstract 

A method for preparing loophole-free four-photon Bell experiments which requires a detection efficiency of 67% is 
proposed. It enables realistic detection efficiencies of 75% at a visibility of 85%. Each of the two type-11 crystals down 
converts one correlated photon pair and we entangle one photon from one pair with one photon from the other pair on a 

highly transparent beam splitter. The entanglement selects two other conjugate photons into a Bell state. Wide solid angles 
for the conjugate photons then enable us to collect close to 100% of them. The cases when both photon pairs come from 
only one of the two crystals are successfully taken into account. Hardy’s equalities are discussed. 0 1997 Published by 

Elsevier Science B.V. 

PACS: 42.50.D~; 03.65.B~ 

1. Introduction 

Two-photon interferometry using down converted pho- 
tons has recently been extensively used for demonstrating 
violations of local [l-8] as well as non-local [9] hidden- 

variable theories. However, in spite of the recent improve- 
ment in the efficiencies of single-photon detectors (close to 

80%) [lo], all experiments carried out to date have had ten 
or more times fewer coincidence counts than singles counts 
and this, in effect, meant a detection efficiency under 10%. 
The reason for this lies in the directional uncertainty of 
signal photons with respect to idler photons. On every ten 
or more detected signal (idler) photons only one of conju- 
gate idler (signal) photons finds its way to the other 

detector. (Detectors in two-photon experiments must have 
the same openings.) Therefore, all experiments carried out 
so far relied only on coincidence counts and herewith on 
additional assumptions - the no enhancement assumption 

I E-mail: mpavicic@faust.irb.hr. 

was the most important one - which were considered very 
plausible. Then Santos devised [ 1 l- 131 local hidden-varia- 
ble models which violate not only the low detection loop- 
hole but also the no enhancement assumption. These mod- 

els, as well as improvements in techniques resulted in 
interest into loophole-free experiments. In the past two 
years several sophisticated proposals appeared which rely 

on detailed elaborations of all experimental details 
[4,7,8,14- 161. The last three proposals make use of maxi- 
mal superpositions and require detection efficiency of at 
least 83% [17], while the first three references make 
proposals for nonmaximal superpositions relying on recent 
results [ 18-201 which require only 67% detection effi- 

ciency. In this paper we dispense with a11 supplementary 
assumptions by proposing a feasible selection method of 
doing a loophole-free Bell experiment which ideally re- 

quires only 67% detection efficiency and can reach a 
realistic detection efficiency as high as 75%. It is shown 
that this means a feasible conclusive experiment with a 
realistic visibility of 85%. The method employs solid 
angles of signal and idler photons (in a type-II down 
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conversion process) which differ five times from each 
other. This enables a detection of more than 90% of 
conjugate photons. We also consider a method of combin- 
ing unpolarized independent photons into spin correlated 
pairs by means of non-spin observables. The physics of 
such a preparation of spin states by means of non-spin 
observables can be paralleled with the polarization correla- 
tion between unpolarized photons discovered by PaviEic’ 
[6] and formulated for classical light by Paul and Weg- 
mann [21]. The main difference is that in the latter experi- 

ments photons cross each other’s paths while in the present 
proposal they do not. At the end we compare Hardy’s 
equalities with the Bell inequalities. 

2. The experiment 

A schematic representation of the experiment is shown 
in Fig. I. An ultra-short laser beam (of frequency w,), split 
by a beam splitter, simultaneously pumps up two type-II 
crystals. We assume that they are beta barium borate 
(BBO) crystals. In each type-II crystal the parametric 

down conversion produces intersecting cones of mutually 
perpendicularly polarized signal (extraordinary linearly po- 

larized within the e-ray plane of the BBO) and idler 
(ordinary linearly polarized within the o-ray plane of the 

BBO) photons (of frequencies we + w, = wp) [22]. Signal 
and idler photons can be of the same frequencies f w, = o), 
= w,/2) in which case the cones are tangent to each 
other. When we tilt the crystal so as to increase the angle 
between the pumping beam and the crystal axis of the 

BBO (increasing w, and decreasing w, slightly) the cones 
start to intersect each other (see inset in Fig. 1). Looking 
only at polarization, we see the photons at the intersections 
of the cones as entangled, because one cannot know which 
cone comes from which photon [23]. We then entangle one 

laser 
beam 

Fig. 1. Lay-out of the proposed experiment. Beam splitter BS and 

detectors Dl’ and D2’, and their counters (which open the gates 

for Bell photon singlets) serve as an event-ready [29] selection 

device. cp’s (compensation plates) represent half-wave plates and 

quartz plates. Inlet in the upper right comer shows intersecting 

cones of down converted photons emerging from type-II crystals. 

s represents solid angles (along the intersection of the cones) 

determined by the pinholes of detectors Dl’ or D2’. 

photon from one pair with one photon from the other pair 
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by an interference of the fourth order at a beam splitter. 
Each successful entanglement (coincidence firing of detec- 
tors Dl’ and D2’) selects (opens the computer gates for 
their counts) the other two conjugate photons into a Bell 
state. 

In a real experiment one first has to make photons at 

the cone intersections of each BBO indistinguishable, 
which means one has to compensate for the finite band- 

widths and different group velocities inside the crystal, i.e., 
for transversal and longitudinal (e-photon pulls ahead) 
walkoff effects. Half-wave plates (exchanging retardation 
of e- and o-photons) and quartz plates (being positive 

uniaxial crystal - BBO is negative) do the job [4,24-261. 
Then, by rotating the crystal, one can entangle the photons 
in a (non)maximal singlet-like or triplet-like state [26]. In 

our proposal we assume both, crystals and plates, prepared 
so as to produce maximal singlet-like states. (It is interest- 
ing that starting with two maximal triplet-like states we 
arrive at the same final expressions for the probabilities: 

cf. Ref. [5].) We also assume that the intensity of the laser 
pumping beam is reduced so that the probability of having 
more than two down converted singlets in chosen solid 

angles within the pumping time is negligible [4]. We stress 
here that we choose a subpicosecond laser since without 

such an ultra-short pumping one would not be able to 
collect valid coincidence counts of Dl’ and D2’ simply 
because there are no detectors which could react in a time 
short enough [5] to confirm the intensity interference be- 
tween two independent down converted photons (from 
two crystals) whose coherence time lies in a subpicosec- 
ond region. Two successive pumping can take place within 
several nanoseconds as determined by the lowest available 

detector resolution (recovering) time. For the feasibility of 
the experiment it is crucial that the probability of both 
photon pairs coming from only one of the two crystals can 

be made sufficiently small in comparison with the proba- 
bility of photon pairs coming from both crystals by using 
more and more asymmetric beam splitter which at the 

same time lowers the required detection efficiency more 
and more towards 67%. We show this at the end of this 

section. 
As we mentioned in Section 1, the main detection 

efficiency problem in two photon interferometry is that 
signal and idler photons have to be in equal solid angles 
and that therefore less than 10% of conjugate photons 

reach a detector. The present set-up enables us to use 
different solid angles for selecting photons (those which 
interfere at the beam splitter) and their conjugate photons 

(whose counts are passed by the gates). For the purpose, 
one has to evaluate the angular width of the conjugate 
photons once we know the central directions (cone inter- 
sections) of both photons. One can show that the angular 

width of a conjugate photon depends on the frequencies of 
the pump, signal, and idler photons, on the band widths, on 

the pump, signal, and idler group refraction indexes, and 
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on the directions of signal and idler photons with respect 
to the pumping beam, but for all combinations of these 
terms, the ratio of 15 between the solid angle of the 
photons we detect by detectors Dl’ or D2’ and the solid 
angle centered around the central direction of the conju- 
gate photons (ph in Fig. 1) assures that over 90% of 
conjugate photons will be found in the latter solid angle 
[27] and that the probability of detecting “third party” 
photons will be negligible. Let us now dwell on deriving 
our probabilities. 

We can have three input states, depending on whether 
the two pairs come from different crystals or both of them 
from only one of the crystals. The probabilities of the pairs 
being emitted in any of these three possible ways are 
equal. The singlets coming from the crystals are mutually 
independent and we therefore formally describe them by 
tensor products. The former one, coming from different 
crystals is given by 

1 
IO) = ~(lllMl_“>,~ - ll,M,)r) 

@ ~(ll,MlJ 
\/z 

2’ - llvM1.~)2’), (1) 

where x corresponds to the e-ray planes of the BBOs and 

y to the o-ray planes. The latter ones, coming from the 
same crystals are given by 

Iry,,) = ~(ll,M1,h~ - 11,M1,h)2/o)2’, (2) 

IWo262) = ~(llx)211y)2’ - I1 ,>*ll,h)Zloh. (3) 

To obtain the four photon coincidence probabilities we 
cannot superpose these three input states upon one another 
because that would violate the principle of indistinguisha- 
bility. To see this let us for the moment assume that our 

detection efficiency be ideal (100%) and that the polarizers 
Pl, Pl I, P2, and P2 1. be removed. Then, with the help of 
the responses of the detectors Dl and D2 we could tell 

(W > (both Dl and D2 would fire), from lYr,,) (only Dl 

would fire) or from I!&> (only D2 would fire). If detec- 
tions in reality had been ideal we would have used only 
]llv >. Since they are not, we have to take ]!I&) and Ity,a) 
into account as well, but helpfully it turns out that the Bell 
inequality containing their corresponding counts (in addi- 
tion to ]!I’) counts) is still violated. Therefore, we start 
with (p), i.e., with two pairs coming out from different 
crystals, and discuss \rY,,) and lqZyr,,) later on. A multi- 
mode representation of the input state will be given later 

on. 
The outgoing electric-field operators describing pho- 

tons - we call them selector photons - which pass 
through beam splitter BS, through polarizers Pl’ and P2’ 

(oriented at angles f3,, and $, respectively), and are 
detected by detectors Dl ’ and D2’, read (see Fig. 1) 

.&= (” ,,xrxcosO,, + a,,,t,sine,,)eik”.“‘-‘O’(‘-“‘~“‘) 

+ i(C2,Xr1cos0,, + Ci2,vr,sin0,,) 

xeie2,.rI,-iw2(f-f2,-rl,) 
(4) 

.e*z = (6 2,rt,~~~~pr + ii2,vr,sin8,,)eik2”rT’-‘WZ(‘-‘~r-Tr2’) 

+ i(ii,,,rXcosOzl + +,r,sinB,.) 

Xeit,,.r2,-iw,(f-_,‘-rZ,) 
(5) 

where tz, tz are transmittances, r_, ry’ are reflectances, ri 
is the time delay after which photon j’ reaches BS, 7jC is 
the time delay between BS and Dj’, tij, is the frequency 
of photon j’, kjJ is the wave vector of photon j’, and I, is 

the wave vector corresponding to kjt after reflection at BS. 

The annihilation operators act as follows: ~?~,ll,),~ = IO,)/, 
ci,,,Dx)j’ = 0, j’ = 192. 

Operators describing photons - we call them Bell 
photons - which pass through polarizers Pl and P2 (ori- 
ented at angles 13, and e2, respectively) and are detected 
by detectors Dl and D2 read 

B, = (8,,c0se, +iilysinel)e-‘“l’l, (6) 

& = (8,,cos0, + ii2,sinC3,)e-iUZ’l. (7) 

The probability of detecting all four photons by detec- 
tors Dl, D2, Dl’, and D2’ is thus 

2 
=+(A2+B2-2ABcos+). (8) 

where 1) is the detection efficiency; A = Q<t),,,Q(f>,,, 

and B = Q(r),2~Q(r)2,c; here Q<qjij =_q,sineicosej - 
q,cosO,sinBj; +=(k, -i2).r, +(k,-k,).rz+(m, - 

wJ7, - 72’). 
To obtain a realistic estimation of the above result we 

start with the multi-mode input states 

11),4)2’= // dw’, dw;ICr,(w,)lCI2(W2)10,),,lW2)2,, 

(9) 

which we introduce into Eq. (1); t,$(w;) (i = 1,2) are both 
peaked at w = iw,: w: = w - wi (i = 1,2). We can keep 
the singlet state description as given by Eq. (1) because it 
has recently been proved by Keller and Rubin [28] - as we 
briefly present below - that a subpicosecond pulse would 
give practically the same output as the continuous pump- 
ing beams provided a group velocity condition is matched. 

In doing so we rely on the experimental and theoretical 
results obtained by Kwiat et al. [26]. We then make a 
Fourier decomposition of the electric-field operators (Eqs. 



M. Pm&C/ Optics Communications 142 (1997) 308-314 311 

(4) and (5)) and obtain the mean value for P( 0,, , B2,, 0, ,/!I,). 
By integrating the latter probability over T,,, T?,, w’, , and 
w; and using 

i/T;_cos(mr+a)dr= sin~~~2)cosa. (lOa) 

/ 

= sinaw 
- sinbw dw = 0, 

--I w (1Ob) 

I 

x sinao 
- cosbo do= 

-m w 
i 

lr for b < a 

n/2 for b = a (11) 
0 for b > a 

we obtain 

P(0,<,8,,,0,,t?,)= ;(A2+B’-2M”,cos@), (12) 

where 

where fifi(7)= j~,q!+(o)coso~ do, (i=O,l), T is the 

detection time, and @= 27r(~, - z,)/L; here L is the 
spacing of the interference fringes, ij are the coordinates 
of detectors Dj’ along k, - g2 and k, - 1, (see Fig. 1 in 

Ref. [7]); we dropped the primes from 7,’ and To, for 
simplicity. We see that @ can be changed by moving the 

detectors transversally to the incident beams. 
By numerical calculation one can easily show that U, is 

not susceptible to the variation of detection time T pro- 

vided 17, - 721 < 10, - 021~’ @Or 17, - 721 +Z Iw, - 

6JJ’ even when 7’~ ]w, - ~a]-‘). For IT, - T21 ==c /w, 
- 

6J21-’ we have L:, -+ 1, i.e., the sharpest fringes, and for 

17, - 721 B ]W, - W2]-’ we have u, -+ 0 and the fringes 
disappear. With the experimentally reachable frequency 
passband Aw of the order of magnitude of THz within a 

single parametric down conversion with a continuous 
pumping beam reaching the condition IT, - ~~1 GC ]A$’ 

there is no problem because the time interval between the 
idler and signal photons is of the order of femtoseconds. In 
our case, when dealing with two simultaneous down con- 
versions we have to resort to an ultra-short pumping beam 
to satisfy the condition. A pulse pumping beam shorter 
than 1 ps would in general “make it possible to distinguish 
pairs of photons born at sufficiently different depths inside 
the crystal with a consequent decrease in two photon 
interference” as recently shown by Keller and Rubin [28]. 
This happens when the center of the momentum of the 
signal and idler photons and the center of the pump pulse 
does not leave the crystal simultaneously. When they do, 
i.e., when, by choosing appropriate material conditions and 

pump frequency for a down conversion within a type-II 
crystal, we make “the inverse of the pump group velocity 

to equal the mean of the idler and signal inverse group 
velocity” [28] and therewith we make the photons indistin- 
guishable again. Singlets appearing from such a “com- 
pensated” crystal therefore keep their description given in 
Ref. [26] and that is what we rely on in the afore-given 
calculation. 

Another realistic detail of the experiment is that the 
pinholes of detectors Dl’ and D2’ are not points but have 
a certain width A z. Therefore, in order to obtain a realistic 
probability we integrate Eq. (8) over Z, and z2 over A z to 
obtain 

A; AZ. 

- 2 ABv,cos 
274z2 -z,> 

L I di, dZ2 

= ;(A’+B’-a2nBcos@), (14) 

where L’ = ue[ sin( TA z/L)/( rrA z/L)]’ is the rlisibility 
of the coincidence counting. 

An analysis of Eq. (14) shows that triggering of Dl’ 
and D2’ by selector photons means that their conjugate 
Bell photons appear entangled in spite of the fact that they 

stem from two independent sources (two crystals) and that 
they do not interact in any way (e.g., they do not cross 
each other’s paths). In general, Bell photons are only 
partially entangled as in the case of classical intensity 

interferometry. For special cases, however, one can achieve 
full quantum nonmaximal entanglement, i.e., one can ob- 

tain probability zero for certain orientations of the polariz- 
ers Pl and P2. In order to obtain such an entangled state, 
which would at the same time enable a violation of the 
Bell inequality with only 67% detection efficiency, it is 

necessary to use an asymmetrical beam splitter, to orient 
polarizers Pl’ and P2’, e.g., along 0,’ = 90” and 0,, = O”, 

and to put detectors Dl’ and D2’ in a symmetric position 
with respect to BS and with respect to the photons paths 

from the middle of the crystals so as to obtain @ = 0. Eq. 
(8) then projects out the following nonmaximal singlet-like 
probability: 

= n2s(cos20,sin2& 

-2vpsin0,cosB,sin0,cosB,cos@+ p2sin’6,cos20,) 

= 7?P(&>&), (15) 

where we assumed near normal incidence at BS so as to 
haver~=r~=Randt~=t_~=T=l-R,whereweused 

s = T2/(R2 + T2), p = R/T, and where we multiplied 

Eq. (14) by 4 for other three possible coincidence detec- 
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tions (i.e., for (e,,,6$>, (B,h,Q), and (B,b ,6,+) which 
we do not take into account because only (8,,,eY)-trigger- 
ing opens the gates) and by (R2 + T*)- ’ for photons 
emerging from the same side of BS (which also do not 
open the gates). 

The single-probability of detecting a photon by Dl is 

P( 0,) = ~s(cos28, + p2sin28,) = qp( I?,). (16) 

In Ref. [7] we have shown that one can select fully 
quantum entangled Bell photons even without polarizers 
Pl’ and P2’; i.e., whenever unpolarized selector photons 
trigger detectors Dl’ and D2’ they open the gates for 
maximally entangled singlet-like state of Bell photons. 
Now, it is of interest to find out whether we can use such 
non-polarization preparation to prepare full non-maximal 
polarization-entangled states. To this aim, we calculate 

Analogously, the single-probability of detecting a photon 
by D2 is 

P( 0,) = qs(sin28, + p*cos28,) = qp(e2). (17) +P(e,,,e2f,e,,e2)+~(e;,e2;L.e,,eZ), 

Introducing the above obtained probabilities into the (20) 

Clauser-Home [29] form of the Bell inequality 

~~~ = p(o,,e,) - p(e,,e;) + p(e;,e;) + P(e;,e,) 

- fye;) - fye,)so, (18) 

where we obtain the last three probabilities by analogy 
with the first one (Eq. (8)); e.g., in order to obtain P(B,h , 
e2,, 8, ,e,), we introduce E2$ instead of E2, into Eq. (81, 
where we get E2t from Eq. (5) upon substituting - sin e2’ 

we obtain the following minimal efficiency for its viola- 

tion 

‘= p(e,,e,) -p(e,,e;) +p(e;,e;) +p(e;,e,) . 

(19) 

We stress here that the probabilities in Eq. (18) are proper 
probabilities - not the ratios of coincidence counts as in 
the experiments carried out so far. For example, P(@,) = 
vp( 0,) is a total number of counts detected by detector D2 
with the polarizer P2 oriented along e2 - it is not either 

~~p(w.a~) or 7?p(~,a2)/p(m,~>. 

for case,, and cos8,, for sin&. Eq. (20) yields 

F_(e,,ee) = v*Z[(l -2r,Zt,2)sin28,sin213, 

+ (1 - 2+;)C0s2e,C0s2e2 

+s - 2r?Wcos@] ) 

where 

s = (t;tt + +,;>< sin28,cos28, + c0s2e,sin28,), 

W= (t,rXsin8,sinf32 i t,r,c0se,c0se2)‘, 

This efficiency is a function of visibility u and by 

looking at Eqs. (15)-(17) we see that for each particular u 
a different set of angles should minimize it. A computer 
optimization of angles - presented in Fig. 2 - shows that 
the lower the reflectivity, the lower the minimal detection 

efficiency. Also, we see a rather unexpected property that 
a low visibility does not have a significant impact on the 
violation of the Bell inequality. For example, with 70% 
visibility and 0.2 reflectivity of the beam splitter we obtain 
a violation of Eq. (18) with a lower detection efficiency 
than with 100% visibility and 0.5 ( p = 1) reflectivity. 

Z= +(l -2r,2tz - 2r2t2 + t*t! f r2r2 ‘? .I) x ,>-I. 

(2’) 

(22) 

(23) 

(24) 

A computer calculation shows that this probability can 
violate the Bell inequalities only for a detection efficiency 
of 83% or higher. It also shows that the probability cannot 
be used for obtaining Hardy’s equalities [30]. On the other 
hand, an analysis of Eq. (21) shows that the only way to 

obtain a non-partial, i.e., full quantum (non-classical) en- 
tanglement is to use a symmetric beam splitter (r,” = r; = 
l/2) and a symmetric position of detectors Dl’ and D2’ 

with respect to BS and with respect to the photon paths 
from the middle of the crystals so as to obtain @= 0. 
Under these conditions Eq. (21) yields P,(B,,e2) 
= fsin2(8, - f3,>, i.e., a maximal singlet-like state. Thus, 

by means of non-spin preparation we can prepare only 

“symmetric” (maximal) non-classical spin correlated 

states. 

0.944 
Leo.5 

0.989 0.901 

X:“,“,i 
0.304 ...““” 

0.737 

+ 

o.668 9 

I 
0 0.5 i p 

Fig. 2. Minimal detection efficiencies 7 necessary for violation of 
the Bell-Clauser-Home inequality as functions of visibility u and 
of p = R/(1 - R), where R is the reflectivity of the beam 
splitter. 

In the end we show that other down conversions which 
may occur in the crystals and enter our statistics do not 
significantly influence the obtained probabilities. The 
probability of both photon pairs coming from only one of 
the two crystals and the probability of their coming from 
both crystals are of course equal, but for p close to 0 the 
influence of photon pairs coming from only one of the two 
crystals can be made small enough for a conclusive Bell 
experiment. Let us see this in detail. 
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Choosing 0,, = 90”. 02, = O”, @= 0, and rewriting the 
electric-field operators (Eqs. (4) and (5)) accordingly, we 
obtain the following probabilities of detecting the “in- 
truder” counts (corresponding to both photons coming 
from the same crystal and being both detected by Dl and 
D2, respectively) while collecting the singles-probabilities 

(Eqs. (16) and (171) 

P,,(90”,0”,0,,-) = P?a(H,) = vsp(l + v)sin*(20,), 

(25) 

P,,(90”,0”,- ,H2) = Pa?( Ha) = nsp(1 + o)sin2(2B2). 

(26) 

We could dispense with these counts only if detectors Dl 
and D2 could tell one photon from two. It is therefore 
important to see whether the Bell inequality Eq. (18) is 
still violated when we have them in our statistics. In order 
to include them into the Bell inequality we should add 

them to the singles-probabilities given by Eqs. (16) and 

(17). By comparing Pza(f?,) and Po2(e2) with P(0,) and 
P(0,), respectively, we see that for the angles close to 
n/2 and n, for which the asymmetrical states violate the 

Bell inequality, the following inequalities hold: P,,( 0,) e 
P( 0, ) and Po2(f&) < P( 0,). For example, for p = 0.1, 
n=O.75, u =0.9, 0, = 104”, 0; = 89”, e2= 181”, and 

0; = 161” we obtain the violation &.u > 0. For the same 
parameters we also obtain BcH - Paa - Pa, > 0. However, 
this reduces the value of Bcu for which the Bell inequality 
is violated by 2/3. On the other hand, we have to use 
birefiingent polarizers Pl and P2 to be able to discard 
counts which fire both Dl and Dl L when collecting data 

for the singles-probability P(0,) by Dl and those which 
fire both D2 and D2 * when collecting data for the sin- 
gles-probability P(tY?) by D2. Therefore, in a real experi- 

ment we should better split unwanted two-photon wave 
packets across additional polarized beam splitters [3] or, 

even better, by applying photon chopping 1311 when 
collecting counts for singles-probabilities. We stress here 
that with this method we do not affect the conclusiveness 
of the Bell experiment but only pick out valid Bell pairs 

from all those ones already selected by the Dl’-D2’ 
coincidence gates. That is, we do not discard any counts 
corresponding to firing of Dl and/or D2 by photons 

coming from different crystals. 

interfere in the fourth order with one photon from the other 
singlet at a highly transparent beam splitter. Coincidental 
detections of the photons interfering at the beam splitter 
(we call them selector phorons) open gates for a selection 
of the remaining two conjugate photons, one from each 
singlet, into a new correlated state: nonmaximal Bell 
sin@. In other words, since no coincidence detection 

between signal and idler photons of the input singlets is 
needed we can use several times wider solid angles for the 
Bell photons than for the selector photons. With five times 
wider solid angle (determined by pinholes ph in Fig. 1) 
we collect practically all Bell companions of those selector 
photons which trigger detectors Dl’ and D2’ in coinci- 
dence. In this way we eliminate the main cause of the low 

detection in all two-photon experiments so far: loosing of 
the conjugate photons (in most cases they “miss” the 
detector opening). An apparent draw-back to our set-up is 
that the probabilities of two pairs coming from both crys- 
tals and of both pairs coming from only one of the crystals 
are equal. However, the above calculations show that for 
reflectivity 0.1, realizable visibility of 85-90%, and 

achievable detector efficiency of 75% [4, IO] the Bell in- 

equality is violated even when the counts corresponding to 
photons emerging from only one of the two crystals are 
included into the statistics by which the inequality is fed. 

3. Conclusion 

We should mention here that although 67% efficiency 
result for Hardy’s equalities has been obtained recently as 
well [32,33] their low marginal violations (of maximal 
value 0.09 as opposed to 0.41 for the Bell inequalities) 
make a loophole-free “Hardy experiment” more demand- 
ing. However, it would be worth trying to collect data for 

it within the proposed set-up because of its conceptual 
clarity and because our results add to the physics of the 

Hardy experiment. In particular, an analysis of Eq. (21) 
shows that Hardy’s equalities, as opposed to the Bell 
inequalities, cannot be formulated for a system which is 

not fully non-classical. Thus, our set-up reveals nonlocality 
of quantum systems as a property of selection of their 
subsystems and Hardy’s equalities as a test (ideally, some 
detectors should always react and some never) of whether 

the system is fully quantum or not. It may turn out that 
quantum nonlocality is only operationally defined in the 

same way in which quantum phase might turn out to be 
only operationally defined. [34] On the other hand, since 
Hardy’s equalities reach their maximal violation for R = 
0.32 and not for R = 0.5, it might turn out the unwanted 
effect of both photon pairs coming from the same crystal 
on the marginal probabilities can be compensated suffi- 

ciently well to make the experiment feasible. 
Our elaboration shows that the proposed loophole-free In the end we mention that the set-up may find its 

Bell experiment which selects two out of four photons into application in quantum cryptography and quantum compu- 
nonmaximal singlet-like states can be carried out with the tation for its property to deliver Einstein-Podolsky-Rosen 
present technique. The proposal makes use of an asymmet- singlets [35] whose “coherence . [is] retained over con- 
rical preparation of two input photon singlets generated by siderable distances and for long times” [36]; actually, our 
two nonlinear type-II crystals. The asymmetry consists in Bell singlets stay coherent for ever, i.e., until we make use 
the fact that we first let one photon from the first singlet of them and collapse them. 
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Note. Some preliminary results to these paper have 
been presented within an invited talk at the Adriatic0 
Research Conference on Quantum Interferometry II, held 
in Trieste, Italy, 4-8 March 1996 [37]. 
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