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A nonclassical feature of the fourth-order interference at a beam splitter, that genuine photon spin singlets are
emitted in predetermined directions even when incident photons are unpolarized, has been used in a proposal
for an experiment that imposes a quantum spin correlation on truly independent photons. In the experiment
two photons from two such singlets interfere at a beam splitter, and as a result the other two photons—which
nowhere interacted and whose paths nowhere crossed—exhibit a 100% correlation in polarization, even when
no polarization has been measured in the first two photons. The proposed experiment permits closure of the
remaining loopholes in the Bell theorem proof, reveals the quantum nonlocality as a property of selection, and
pioneers an experimental procedure for the exact preparation of unequal superposition.

PACS numbers: 42.50.Wm, 03.65.Bz.
1. INTRODUCTION
The fourth-order interference of photons has been given
growing attention in the literature in the past few years
mostly because it has provided several rather unexpected
results that differ from the classical intensity-interference
counterparts1–23: for example, downconverted induced
coherence18; the nondependence of the interference on the
relative intensity of the incoming beams12; a disproof1,15 of
Dirac’s dictum, “Interference between two different pho-
tons never occurs”24; interference of photons of different
colors5; entanglement of photons that did not in any way
directly interact in the configuration space20 or in the
spin space21,23; and particularly successful testing of both
local7,9,13 and nonlocal17,18 hidden-variable theories.

In this paper I close the no-enhancement and low-
efficiency loopholes that weaken the Bell theorem proof,
show that quantum nonlocality is essentially a property
of selection, and establish a procedure for recording un-
equal superpositions without loss of detection counts. In
accomplishing these objectives I rely on the spin fea-
tures of the fourth-order interference at a beam split-
ter, which Summhammer and I previously used for the
entanglement of two photon pairs coming from two cas-
cade sources.21,23 In the interference both initially po-
larized and initially unpolarized incident photons emerge
from two different sides of the beam splitter unpolarized
but correlated (Section 2). This enables me to devise an
experiment in which two photons from two such singlet
states interfere in the fourth order at a third beam split-
ter, and as a result two other companion photons from
each pair turn out to be entangled and correlated in po-
larization, even when polarization is not measured for the
first two photons at all. In Section 3 I elaborate the the-
ory of such an entanglement, and in Section 4 I present
the experiment with a realistic approach in which I dis-
cuss the spatial visibility of the correlations.

Correlated photons emerge from cascading atoms in all
0740-3224/95/050821-08$06.00
directions that are allowed by such a three-body process,
and by registering only those pairs that reach detectors
one actually selects a subset of all correlated photons; thus
one can raise doubts as to whether the selected set prop-
erly represents the whole set. An affirmative assump-
tion, known as the no-enhancement assumption, has been
widely adopted since Clauser and Horne25 first used it.
Recently however, Santos26 pointed out the problem and
calculated that no experiment carried out on photons born
in a cascade process can confirm the no-enhancement as-
sumption. As opposed to this situation, photons coming
from a beam splitter build spin- (polarization-) correlated
pairs only in particular precisely determined directions;
on the other hand, it was believed that such setups force
the experimentalist to discard more than 50% of the data
because detectors cannot tell one photon from two, and
the experimentalist has to rely only on coincidence counts.
However, I show that one can devise an experiment in
which none of the data need be discarded, thus avoiding
Santos’s objection. I do this in Section 4 by describing
a device for preselecting spin-directed correlated photons
from among those photons that have not in any way di-
rectly interacted with one another. The experiment can
close all the existing loopholes in disproofs of local hidden-
variable theories, including the low-efficiency one, thanks
to preselection of photons, and may provide a scheme for
disproving nonlocal theories as well. In closing the low-
efficiency loophole I show how to prepare and measure
unequal superpositions exactly; this method is presented
at the end of Section 4.

2. SPIN-CORRELATED INTERFEROMETRY
WITH A BEAM SPLITTER
The experimental design rests on the fact that under par-
ticular conditions the fourth-order interference makes un-
polarized and independent incident photons correlated in
polarization (spin) and changes polarized incident photons
1995 Optical Society of America
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Fig. 1. Beam splitter. D’s, detectors; P’s, birefringent polariz-
ers; BS, beam splitter.

into unpolarized ones. This property was recognized only
recently22 because, although the fourth-order interference
in configuration space has been elaborated in detail in the
literature,1–5,7–18 the fourth-order interference lacked a de-
tailed elaboration and apparently a proper understanding
in spin space. One of the rare partial elaborations was
provided by Ou et al.27 for a special case of orthogonally
polarized photons. They clearly recognized that orthogo-
nally polarized photons coming into a symmetrically posi-
tioned beam splitter produce a singletlike state at a beam
splitter2,7,8,27 and that parallelly polarized photons com-
ing into a symmetrically positioned beam splitter never
appear on opposite sides of the beam splitter,28 but it does
not seem to have been recognized that the polarization of
incoming photons has no effect on the correlation in polar-
ization of the outgoing photons and that it affects only the
intensity of the photons emerging from opposite sides of
the beam splitter. In what follows I describe the spin of
the fourth-order interference at a beam splitter by using
some results obtained previously.22

Let two photons interfere at a beam splitter as shown
in Fig. 1. First, I describe the interference of polarized
and later of unpolarized photons. The state of incoming
polarized photons is given by the product of two prepared
linear polarization states:

jCl ­ scos u10 j1xl10 1 sin u10 j1yl10 d

≠ scos u20 j1xl20 1 sin u20 j1y l20 d , (1)

where j1xl and j1yl denote the mutually orthogonal photon
states. So, e.g., j1xl10 denotes the upper incoming pho-
ton polarized in direction x. If the beam splitter were
removed, this photon would cause a click at detector D1
and no click at detector D1', provided that birefringent
polarizer P1 is oriented along x. Here D1' means a de-
tector counting photons coming out at the other exit of
birefringent prism P1. Angles u10 and u20 are the angles
along which incident photons are polarized with respect
to a fixed direction.

I do not consider any second-order interference because
the signal and the idler photons emerging from the nonlin-
ear crystals that are used in the experiment of Section 3
have random phases relative to each other. Thus we are
left with the fourth-order interference, i.e., with two in-
teracting photons described by two corresponding electric
fields. To describe the appropriate interaction of photons
with the beam splitter, polarizers, and detectors I use the
second quantization formalism employed, e.g., by Paul,1

by Ou and co-workers,4,14,15 and by Campos et al.16

Let us introduce polarization by means of the
stationary-electric-field operator whose orthogonal
components read as (see Fig. 1)

Êj srj , td ­ âj svj dexpsikj ??? rj 2 ivj td . (2)

The annihilation operators describe joint actions of
the polarizers, the beam splitter, and the detectors.
The operators act on the states as follows: â1xj1xl1 ­
j0xl1, â1x

yj0xl1 ­ j1xl1, â1xj0xl1 ­ 0, etc. Thus, the ac-
tion of polarizers P1 and P2 and detectors D1 and D2
can be expressed as

âi ­ âix out cos ui 1 âiy out sin ui , (3)

where i ­ 1, 2.
The operators corresponding to the other choices of de-

tectors are obtained accordingly. For example, the ac-
tion of polarizer P2 and the corresponding detector D2'

(as shown in Fig. 2) is described by

â2 ­ 2â2x out sin u2 1 â2y out cos u2 . (4)

The outgoing electric-field operators describing photons
that pass through beam splitter BS and polarizers P1 and
P2 and are detected by detectors D1 and D2 will thus read
as

Ê1 ­ sâixtx cos u1 1 â1yty sin u1dexpsik1 ??? r1 2 iv1t1d

1 isâ2xrx cos u1 1 â2yry sin u1d

3 expsik̃2 ??? r1 2 iv2t1d , (5)

Fig. 2. Schematic of the experiment. NL1, NL2, crystals.
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Ê2 ­ sâ2xtx cos u2 1 â2yty sin u2dexpsik2 ??? r2 2 iv2t2d

1 isâ1xrx cos u2 1 â1yry sin u2d

3 expsik̃1 ??? r2 2 iv1t2d , (6)

where i supplies the phase shift during reflection on the
beam splitter, tj is the time of detection of a photon by
detector Dj , vj is the frequency of photon j , and c is the
velocity of light. Here the crystal as a supposed source of
(idler and signal downconverted) photons is assumed to be
positioned symmetrically with respect to the beam splitter
(with respect to the photon paths from the center of the
crystal to the beam splitter). This is just the opposite of
the elaboration in Ref. 22, where detectors were assumed
to be positioned symmetrically to the beam splitter, and
time delays for the sources were introduced to describe
photons born in the atomic cascade processes used in
Ref. 23.

The joint interaction of both photons with the beam
splitter, polarizers P1 and P2, and detectors D1 and D2
is given by a projection of the wave function onto the
Fock vacuum space by means of Ê1 and Ê2, which yields
the following probability of the photon’s being detected in
coincidence22 by D1 and D2:

P su10 , u20 , u1, u2d ­ kCjÊ2
yÊ1

yÊ1Ê2jCl

­ A2 1 B2 2 2AB cos f , (7)

where jCl is given by Eq. (1) and

f ­ sk̃2 2 k1d ??? r1 1 sk̃1 2 k2d ??? r2 1 sv1 2 v2dst1 2 t2d ,

(8)

A ­ S101stdS202std, and B ­ S102srdS201srd; here

Sij ­ sx cos ui cos uj 1 sy sin ui sin uj . (9)

Assuming v1 ­ v2, we obtain (see Fig. 1) f ­ 2psz2 2

z1dyL , where L is the spacing of the interference fringes.2

For tx ­ ty ­ rx ­ ry ­ 221/2 and cos f ­ 1 (we can
modify f by moving the detectors transversely to the
incident beams) the probability reads as

P su10 , u20 , u1, u2d ­ sA 2 Bd2

­ 1/4 sin2su10 2 u20 d sin2su1 2 u2d , (10)

which with the polarizers removed yields

P su10 , u20 , `, `d ­ 1/2 sin2su10 2 u20 d . (11)

We can see that the probability in Eq. (10) factors (see
Fig. 1) left–right (corresponding to 10 –20 preparation $

D1–D2 detections) and not up–down (corresponding to
10
20

l preparation) in spite of the up–down initial inde-
pendence described by the product of the upper and the
lower functions in Eq. (1). We can also see that chang-
ing the relative angle between the polarization planes of
the incoming photons changes only the light intensity of
the photons emerging from the beam splitter at partic-
ular sides. Thus the photons either emerge on two dif-
ferent sides of the beam splitter, correlated according to
Eq. (10), or both emerge on one side according (when we
do not measure their outgoing polarization) to the follow-
ing overall probability:

P su10 , u20 , `, `d ­ 1/2f1 1 cos2su10 2 u20 dg , (12)

which together with Eq. (11) adds up to 1.
We can also see that the photon beams leave the beam

splitter unpolarized:

P su10 , u20 , u1, `d ­ 1/4 sin2su10 2 u20 d . (13)

If both incoming photons arrive unpolarized—coming,
e.g., from two simultaneously cascading independent
atoms or, better, from two other beam splitters, a pos-
sibility that follows directly from Eq. (13)—then they
appear22 correlated whenever they emerge from the op-
posite sides of the beam splitter,

P s`, `, u1, u2d ­ 1/8 sin2su1 2 u2d , (14)

and partially correlated whenever they both emerge from
the same side of the beam splitter,

P s`, `, u1, u2d ­ 1/8f1 1 cos2su1 2 u2dg . (15)

The latter probability can be tested experimentally with
the help of an additional beam splitter in each arm, fol-
lowing Rarity and Tapster,29 or by means of photons of
different colors, which one can distinguish with frequency
filters (prisms).5,30,31

In the case of nondegenerate idler and signal down-
converted photons (produced by means of asymmetrically
positioned pinholes), i.e., in the case of photons of dif-
ferent colors, we should, according to Eq. (8), obtain a
space–time combination of spacelike intensity interfer-
ence and timelike frequency-difference beating. The lat-
ter effect, however, cannot be measured simultaneously
with observation of the intensity interference fringes be-
cause the fast photon beating would wipe out the spatial
fringes. For observation of the beating itself one uses
the optical-path-length-difference method, by which the
coincidences are recorded.5,30 Thus in the present no-
tation we can simply drop the dot products in Eq. (8),
and then the method consists of moving the beam split-
ter up or down to yield the optical path-length difference
d ­ cjt1 2 t2j, and thus jfj ­ jv1 2 v2jdyc. In this way
one can register beating corresponding to 30 fs by means
of detectors and counters whose resolving time is 10 ns.5

The main coincidence probability for particular polariza-
tion measurements given by Eq. (7) remains the same for
the beating between photons of different frequencies as it
was for the degenerate idler and signal photons. The fact
that one can trace the path of each photon is not contradic-
tory here because, first, we are dealing not with the beam
intensity but with the intensity correlation, and, second,
as I have already stressed, the polarization preparation
of photons is erased by the beam splitter anyway.

For the experiment the most important consequence
of the obtained equations is that the photons appear en-
tangled in a singlet state whenever they appear on differ-
ent sides of the beam splitter provided that the condition
f ­ 0 is satisfied, no matter whether the incident pho-
tons were polarized, for Eqs. (10) and (14) tell us that the
probability of such photons passing parallel polarizers is
equal to zero.
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3. THEORY OF ENTANGLEMENT
IN THE EXPERIMENT

A schematic representation of the experiment is shown in
Fig. 2. Two independent beam splitters, BS1 and BS2,
act as two independent sources of two independent sin-
glet pairs, which is justified by Eq. (10) as elaborated in
Section 2. Two photons from each pair interfere at beam
splitter BS, and as a result the other two photons, under
the particular conditions elaborated below, appear to be
in the singlet state, although they are completely inde-
pendent and have nowhere interacted.

An ultrashort32 laser beam (a subpicosecond one) of
frequency v0 (split by a beam splitter) simultaneously
pumps up two nonlinear crystals NL1 and NL2, producing
in each of them pairs of signal and idler photons (simul-
taneously and with equal probability) of frequencies v1

and v2, respectively, which satisfy the following energy
and momentum conservation conditions: v0 ­ v1 1 v2

and k0 ­ k1 1 k2.33 By means of the appropriately sym-
metrically positioned pinholes, half-frequency sidebands
are selected so as to have v2 ­ v1. The idler and the
signal photon pairs coming out from the crystals do not
have definite phases28,34 with respect to each other, and
consequently one can have a second-order interference
at neither BS1 nor BS2. To prevent any coherence that
might be induced by the split pumping beam between the
idler (or signal) photon from the first crystal and the idler
(or signal) photon from the second crystal, I introduce a
phase modulator (which rotates to and fro at random and
destroys the second-order phase coherence); this follows
Ou et al.6 (I do take a correction term corresponding to
the modulator into account when estimating the visibility
below but do not show it in the equations for the sake of
simplicity.)

Thus two sources, BS1 and BS2, both simultaneously
emit two photons to the left and to the right in the sin-
glet states given by Eq. (10). But, before beam splitters
BS1 and BS2 are put into place, beam splitter BS and de-
tectors D1, D1', D2, and D2' must be adjusted to yield
f ­ 0. After that BS is removed, BS1 and BS2 are put
into place to be adjusted, and detectors D10, D10', D20,
and D20' are adjusted (while the other detectors remain
fixed) to yield pure singlet states emerging from BS1 and
BS2. It follows from Eq. (10) and Fig. 2 that one can do
this for f ­ 0 by reaching the minimum of coincidences
(ideally the minimum should be zero) for u10 ­ u1 for BS1
and for u20 ­ u2 for BS2. It is interesting that this step
of tuning beam splitters BS1 and BS2 and detectors D10,
D10', D20, and D20' is not crucial, because the four-photon
entanglement is not dependent on the positions of these
detectors in directions perpendicular to the photon paths;
i.e., according to Eq. (21) there are interference fringes
not for photons 10 and 20, but only for photons 1 and 2.
Then beam splitter BS is put into place, and four photons
form elementary quadruples of counts, which in the long
run add up to the probabilities calculated below. The
quadruple recording is obtained by the following preselec-
tion procedure: Whenever exactly two of the preselection
detectors (D1, D1', D2, and D2') fire in coincidence (see
Fig. 2), a gate for preselected counters D10, D10', D20, and
D20' opens. (The gate is shown in Fig. 3 for a special
case with polarizers P1 and P2 removed and is consid-
ered to be part of the quadruple recording box in Fig. 2.)
When only one or none of the so preselected counters fires,
the records are discarded (because they correspond to four
or three photons detected by the preselection detectors).
When exactly two of the four preselected counters fire, the
corresponding counts contribute to our statistics. The
possibility of two photons going into one arm of the beam
splitter and the possibility that a detector fails to react
because of its inefficiency are discusssed in Section 4.

The state of the four photons immediately after they
leave BS1 and BS2 from oppposite sides is described by
the product of the two superpositions corresponding to
singlet pairs produced [according to Eq. (10)] at BS1 and
BS2:

jCl ­
1

p
2

sj1xl10 j1yl1 2 j1yl10 j1xl1d

≠
1

p
2

sj1xl20 j1yl2 2 j1yl20 j1xl2d , (16)

where j1xl and j1yl denote the mutually orthogonal photon
states.

The annihilation of photons at detectors D10 and D20

after the photons pass polarizers P10 and P20 (oriented at
angles u10 and u20 ) are described by the following electric-
field operators:

Ê10 ­ sâ10x cos u10 1 â10y sin u10 dexps2iv1
0t10 d , (17)

Ê20 ­ sâ20x cos u20 1 â20y sin u20 dexps2iv2
0t20 d . (18)

Here phases of the photons that accumulate between
beam splitters BS1 and BS2 and detectors D10 and D20

add the factors exps2ivj tj d, where tj is the time of detec-
tion of a photon by detector Dj 0 and vj is the frequency of
the photon. [The frequencies of photons are considered
to be different for the sake of generality until we reach
Eq. (21).]

The outgoing electric-field operators describing photons
that pass through beam splitter BS, polarizers P1 and P2,
and detectors D1 and D2 are given by Eqs. (5) and (6).

The joint interaction of all four photons with beam
splitter BS, all polarizers, and detectors D1, D2, D10, and
D20 is given by the following projection of the initial state,
given by Eq. (16), onto the Fock vacuum space:

Ê10 Ê20Ê1Ê2jCl ­ 1/2sAe12 2 B ẽ12dej0l , (19)

where jCl is given by Eq. (16), e12 ­ expfisk1 ??? r1 1 k2

??? r2 2 v1t1 2 v2t2dg, ẽ12 ­ expfisk̃1 ??? r2 1 k̃2 ??? r1 2 v1t2

2 v2t1dg, e ­ expf2isv1
0t10 1 v2

0t20 dg, A ­ Qstd101Qstd202,
and B ­ Qsrd102Qsrd201; here

Qsqdij ­ qx sin ui cos uj 2 qy cos ui sin uj . (20)

The corresponding probability of detecting all four pho-
tons with the above combination of the detectors is thus

P su10 , u20 , u1, u2d ­ kCjÊ20
yÊ10

yÊ2
yÊ1

yÊ1Ê2Ê10 Ê20 jCl

­ 1/4sA2 1 B2 2 2AB cos fd , (21)

where

f ­ sk̃2 2 k1d ??? r1 1 sk̃1 2 k2d ??? r2 1 sv1 2 v2dst1 2 t2d .
(22)

For v1 ­ v2 ­ v1
0 ­ v2

0 we obtain (see Fig. 1; this applies
to BS in Fig. 2 as well) f ­ 2psz2 2 z1dyL , where L is the
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spacing of the interference fringes. f can be changed
by movement of the detectors transverse to the incident
beams.

To make Eq. (21) clearer, without loss of generality,
here I consider a 50:50 beam splitter: tx ­ ty ­ rx ­
ry ­ 221/2. In Section 4 I also consider a polarized beam
splitter.

For f ­ 0, the above probability reads as

P su10 , u20 , u1, u2d ­ s1y4dsA 2 Bd2

­ s1y16d sin2su10 2 u20 d sin2su1 2 u2d .

(23)

We can again see that the probability factorizes left–right
(corresponding to D10 –D20 $ D1–D2 detections; see
Fig. 2) and not up–down (corresponding to BS1

BS2 l prepa-
ration), as one would be tempted to conjecture from the
product of the upper and the lower function in Eq. (16).
With polarizers P1 and P2 removed, Eq. (23) gives

P su10 , u20 , `, `d ­ 1/8 sin2su10 2 u20 d . (24)

The overall probability of detecting both photons in one
arm of BS is given by

P su10 , u20 , u1u2d ­ s1y16dfcossu10 2 u1dcossu20 2 u2d

1 cossu10 2 u2dcossu20 2 u1dg2 , (25)

which with the polarizers removed reads as

P su10 , u20 , ``d ­ 1/8f1 1 cos2su10 2 u20 dg . (26)

The latter probability is obtained by addition of all
the probabilities of detecting polarizations of each pho-
ton in one arm, i.e., P su10 , u20 , u1u2d [given by Eq. (25)],
P su10 , u20 , u1u2

'd, etc. We can see that probabilities (24)
and (26) add up to 1y4.

Probability (23) shows that, for f ­ 0, by removing one
of the polarizers we lose any left–right (Bell-like) spin cor-
relation completely: P su10 , `, u1, u2d ­ s1y16d sin2su1 2

u2d. On the other hand, for f fi 0 we obtain a partial
left–right correlation even when two polarizers, one on
each side, are removed.

4. THE EXPERIMENT AND THE BELL ISSUE
The main point of the experiment is that the correla-
tion between photons 10 and 20, i.e., between photons
that never interacted in the past, persists even when
one does not measure polarization on their companions,
photons 1 and 2, at all, as follows from Eq. (24). There-
fore I concentrate on the experiment without polarizers
P1 and P2 behind beam splitter BS. To make my point, I
present the appropriate experimental setup in the simpli-
fied and reduced scheme presented in Fig. 3. The setup
deals with four photons of the same frequency and relies
on (computer) time windows for coincidence detections,
which compensates for the long response time of the detec-
tors. Afterward I consider the experiment with a more
realistic approach, using polarizers P1 and P2 as shown
in Fig. 2.

In the idealized approach from Section 3 the probabil-
ity of detecting all four photons with detectors D1, D2,
D10, and D20 in coincidence for a 50:50 beam splitter, for
f ­ 0, and with equal time delays (that is, for a com-
pletely symmetric position of BS) is given by Eq. (24),
and the probability of detecting both photons in one of
the arms by Eq. (26). We see that these two probabili-
ties add up to 1y4. (The other 3y4 corresponds to orthog-
onal detections with D' detectors included.) The former
probability, given by Eq. (24) and describing coincidence
detections by D10 and D20, corresponds, when multiplied
by 4, to the following singlet state:

jCsl ­ s1y
p

2dsj1xl1j1y l2 2 j1yl1j1xl2d . (27)

Multiplication by 4 is for photon pairs that emerge from
the same side of BS and that therefore do not belong to our
statistics. Analogously, the probability of coincidental
detection by D10 and D20' (which is used below),

P su10 , u20
', `, `d ­ 1/8 cos2su10 2 u20 d , (28)

corresponds to the following tripletlike state:

jCtl ­ s1y
p

2dsj1xl1j1yl2 1 j1y l1j1xl2d . (29)

Thus photons 10 and 20 belonging to quadruples con-
taining photons 1 and 2, which appear at different sides
of the beam splitter, exhibit quantumlike behavior, show-
ing, according to Eq. (24), 100% relative modulation.7 In
other words, detecting the right photons on different sides
of the beam splitter preselects the orthogonal individual
left photons pairs (25% of all pairs) with probability 1,
whereas detecting both right photons on one side of the
beam splitter would (if it were experimentally possible)
preselect the parallel pairs (75% of all pairs) with proba-
bility 1y3. When we compare this result with its classi-
cal formulation22 carried out by Paul and Wegmann,35 we

Fig. 3. Simplified schematic of the experiment.
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see that the former case (photons emerging from differ-
ent sides of the beam splitter) is completely nonclassical.
This means that it is the nonclassical feature of the in-
tensity correlations that makes the experiment possible.

Let us now dwell on the details of the experiment with-
out polarizers P1 and P2 behind beam splitter BS, as
shown in Fig. 3. A pair consisting of two photons 10 and
1 appears from BS1 simultaneously with another pair 20

and 2 from BS2. Photon 10 is directed toward detector
D10 or D10', photon 20 is directed toward detector D20 or
D20', and photons 1 and 2 are directed toward detectors
D1 and D2. Of all detections registered by D1 and D2,
only those counts that occur within a short enough time
window (,10 ns) are fed to the preselection coincidence
counter. Thanks to the ultrashort pumping beam (v0),
which ensures an appearance of downconverted pairs
of photons (v ­ v0y2, emerging from the crystals and
passing through symmetrically positioned pinholes) every
50 ns on the average, one is able effectively to control co-
incidences, each of which occurs (as a property of down-
conversion) well within our time window. In this way we
overcome the problem of having a detector reaction time
longer than the fourth-order correlation time and the co-
herence time. Thus each pair of the pulses belongs to the
two photons that interfered at the BS so as to emerge at
opposite sides of the beam splitter. (Realistically, as is
stressed below, the visibility of this two-photon detection
boils down to about 85%; I discuss the possibility below
of having detected three or four photons because it is pos-
sible that both photons emerge from one side of BS1 or
BS2.) Each D1–D2 time window is coupled (as calcu-
lated from the time-of-flight difference) with a computer
gate for counts from detectors D10, D20, D10', and D20'.
If counters D1 and D2 register not coincidence counts but
a only single count, then the gated D10, D20, D10', and
D20' recordings are discarded. If coincidence counts are
registered, then the data potentially contribute to the sta-
tistics of what I call the Bell recording in Fig. 3. Since I
use birefringent polarizers, I have to have a coincidence
firing of exactly two of the counters D10, D20, D10', and
D20' to obtain definite data for the statistics. Firing of
one or none of the counters, as well as of three or all four,
eliminates the corresponding data because they do not
belong to the set of quadruple events. P su10 , u20 , ``d of
Eq. (24) is then given by the ratio between the numbers
of coincidence counts,

f su10 , u20 d ­
nsD10 > D20 d

nfsD10 < D10'd > sD20 < D20'dg
, (30)

divided by 4. Division by 4 compensates for the photons
that emerge from the same side of the BS and are there-
fore discarded from the statistics as not belonging to the
considered set of events. Of course, I produce an error
here because counters can remain inactive as a result of
their inefficiency, but one can always use Mach–Zehnder
interferometers instead of BS1 and BS2 to avoid this prob-
lem. The advantages of the interferometers would be,
first, that one can adjust them so that photons almost
always emerge from opposite sides of the second beam
splitter and almost never from the same side and, second,
that a detector resolution time that is much longer than
the coherence time is no longer a problem (in contradis-
tinction to a single beam splitter)—it is even required.14,16
I did not use the interferometers here so as not to over-
complicate the presentation, but I comment on them in
some detail below. Alternatively, one can use photons of
different frequencies for each pair and rely on their beat-
ing instead on the spatial fringes as explained at the end
of Section 2.

The assumed 100% visibility above is, of course, an
oversimplification, since probability (21) cannot be mea-
sured at a point (see Fig. 1) but only over a detector width
Dz. Therefore, to obtain a more realistic probability, fol-
lowing Ghosh and Mandel,3 I integrate Eq. (21) over z1

and z2 over Dz to obtain

P su10 , u20 , u1, u2d ­ 1/4
Z z11Dz/2

z12Dz/2

Z z21Dz/2

z22Dz/2
hA2 1 B2 2 2AB

3 cosf2psz2 2 z1dyLgjdz1dz2

­ 1/4sA2 1 B2 2 v2AB cos fd , (31)

where v ­ fsinspDzyLdyspDzyLdg2 is the visibility of the
coincidence counting. A visibility of 95% has been esti-
mated as achievable in principle12; 80% and 87% were
reached recently.36,37

Thus Eq. (24), corrected for a realistic visibility, reads
as

P su10 , u20 , `, ` d ­ 1/8f1 2 v cos2su10 2 u20 dg . (32)

To see that the results really close all the remaining
loopholes in disproving local hidden variable theories, let
us end by discussing the corresponding Bell’s inequality:

S ; P su10 , u20 d 2 P su10 , u20
0 d 1 P su10

0, u20
0 d 1 P su10

0, u20 d

2 P su10
0 , `d 2 P s`, u20 d # 0 , (33)

where P su10 , u20 d ­ 4P su10 , u20 , `, `d, etc. The singlet
states of photons 10 and 20 and the corresponding prob-
abilities 1/2 sin2su10 2 u20 d correspond to the D10 –D20

coincidence counts preselected by D1–D2 coincidence
counts. Since, ideally, none of the so preselected pho-
tons escapes detection, we have thus satisfied Santos’s
demand.26 To be more specific, P su10 , u20 d is not ob-
tained as a coincidence-count rate as in the previous
experiments2,7,8 but as the ratio (frequency) f su10 , u20 )
given by Eq. (30), where the total number of counts in
the denominator can actually be recorded.

Ideally, for a violation of Bell’s inequality and hence for
a possible exclusion of hidden-variable theories, v must
be8 larger than 221/2. If we also take into account the
overall efficiency of detectors h defined by P su10 , u20 d ­
hf su10 , u20 d for the case of equal superposition given by
Eq. (16), inequality (33) can be violated only if38,39

hs1 1 v
p

2d . 2 . (34)

So, for the visibility v ­ 1, we must have h . 83%.
For the recently achieved visibilities v ­ 0.8 (Ref. 37)
and v ­ 0.87 (Ref. 36), according to Eq. (34) this implies
h . 0.94 and h . 0.9, which was already announced as
achievable.40,41 Thus the experiment in the presented
setup is just about to become feasible. However, using
my most recent result one can adjust it so as to be com-
fortably over this threshold and conclusively feasible with
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the present technology. Let me elaborate this in some
detail.

As forerunners of the singlet states selected among pho-
tons whose paths nowhere crossed in the experimental
space, several simpler setups involving only two photons
interfering at beam splitters were reported. In particu-
lar, the Mach–Zehnder interferometer was recognized as
a possible source of 100% correlated photons (i.e., without
both photons emerging from the same side of the second
beam splitter).14,16 However, until the results of Kwiat
et al.41 and my results22 it was not recognized that these
photons appear correlated in polarization and automati-
cally satisfy Santos’s demand up to the efficiency of the de-
tectors. Kwiat et al.41 carried out an explicit calculation
for the single Mach–Zehnder interferometer and immedi-
ately addressed detector efficiency limitations and focused
on a recent result obtained by Eberhard42 as a possible
remedy. (It should be stressed here that with regard to
detector efficiencies Hardy’s43 proposal cannot be consid-
ered an answer to Santos’s objection because the available
visibility in his proposal is 30%.) Eberhard has tried to
show that if one uses unequal superpositions,

jCrl ­
1

p
1 1 r2

sj1xl1j1y l2 1 rj1y l1j1xl2d , (35)

instead of equal ones (given by r ­ 1), then one would be
able to lower the required efficiency of detectors to 67%.
(It can be shown that the efficiency minimum cannot be so
low. However, it is still lower than 83%.) The problem
is how to prepare jCrl. Eberhard himself connected the
effect with the background noise, and the drawbacks of
this definition are, first, that one can hardly specify the
background and, second, that one loses counts. I have,
however, found the following way to use Eberhard’s result
without any losses and without invoking any background
noise.

From Eqs. (21) and (4) it follows that the probability
of having coincidence counts by detectors D10 and D20'

after a selection by (see Fig. 2) detectors D1 and D2 with
the polarizer orientations u2 ­ 0 and u1 ­ py2 and with
ty ­ ry ­ 221/2 is given by

P su10 , u20
'd ­

1
1 1 r2

scos u10 cos u20 1 r sin u10 sin u20 d2 ,

(36)

where r ­ rxytx and where counts registered by D10' and
D20 are also taken into account to yield the proper prob-
ability. Since it can easily be shown that the detected
photons are in the state described by Eq. (35), Eberhard’s
term r is recognized as the ratio between the reflection
and the transmission coefficients of the polarized beam
splitter. On the other hand, Eq. (36) establishes an ex-
perimental procedure for measuring unequal superposi-
tion without loss of detection counts, since the probability
P su10 , u20

'd can be obtained as the frequency

f su10 , u20
'd ­

nsD10 > D20'd
nfsD10 < D10'd > sD20 < D20'dg

, (37)

where both nsD10 > D20'd and nfsD10 < D10'd > sD20 <
D20'dg can be recorded with equal accuracy.

This should44 close all the remaining loopholes in the
Bell’s proof and constitutes a most discriminating test of
Bell’s inequality.
5. CONCLUSION

The proposed experiment is an application of a polariza-
tion correlation between two independent and unpolarized
photons. The experiment is based on a newly discovered
nonclassical effect in the fourth-order interference at a
beam splitter according to which two unpolarized inci-
dent photons emerge from a beam splitter correlated in
polarization, as follows from Eqs. (7) and (14). The es-
sential new element of the experiment is that it puts to-
gether two photons from two singlets formed at two beam
splitters and makes them interfere at a third beam split-
ter, and as a result one finds polarization correlations be-
tween the other two photons, which nowhere interacted
and whose paths nowhere crossed, even when no polar-
ization measurement was carried out on the former two
photons, as follows from Eqs. (21) and (23). As for the
latter two photons that nowhere interacted, one of their
subsets turns out to contain only photons in the singlet
state, and since one is able to extract these photons with
a probability of 1, one can consider them preselected by
their pair-companion photons that interfered at the beam
splitter. By using birefringent prisms, one can in prin-
ciple detect all the photons from the subset and obtain
probability (24) as a proper frequency (a ratio of counts)
given by Eq. (30). In this way we close the enhancement
loophole of the Bell theorem proof. On the other hand,
the experiment shows that it is not a direct interaction
between photons or their common origin that entangles
them in a polarization singlet state but particular cor-
relations, which one can preselect without resorting to
polarization measurement at all. We conclude that non-
locality is essentially a property of selection. This con-
clusion might exclude all nonlocal hidden-variable theo-
ries that rely on some kind of a physical entanglement by
means of a common origin.

The realistic estimation of the experiment carried out
in Section 4 for the equal superposition given by Eq. (27)
shows that such a setup is just about to become feasible
within the so-called (see Section 4) 83% limit, thus nar-
rowing the second, efficiency loophole in the Bell theorem
proof. It should be stressed here that a helpful feature
of the considered effect is that the entanglement, qua-
druple firing of preselection detectors D1 and D2 behind
the beam splitter and two of the second group of detec-
tors, catching the other two free photons, is independent
of the positions of the second group of detectors and also of
the moment of their firing, as follows from Eqs. (21) and
(31). In other words, the visibility of the whole entangle-
ment and the visibility of the two-photon coincidence at
BS practically do not differ.

To narrow the efficiency loophole, I resort to polariza-
tion measurement and unequal superposition [given by
Eq. (35)], whereby one can make the experiment with an
efficiency that is less than 83% by recognizing Eberhard’s
r term not as a measure of a background noise but as
the ratio of the reflection to the transmission coefficient
in one of the measured polarization directions (at a po-
larized beam splitter). At the same time this approach
establishes what is to my knowledge the first experimen-
tal procedure for exact preparation and measurement of
unequal superposition without loss of detection counts.
In other words, when, with the help of partially polarized
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beam splitter BS and all detectors D1, D1', D2, and D2',
photons are preselected in the subset of photons in the un-
equal tripletlike state given by Eq. (35), one does not lose
counts because the detectors, by means of birefringent po-
larizers P10 and P20, register all counts, so that one can
form a proper frequency, given by Eq. (37), to verify the
corresponding probability, given by Eq. (36). This closes
the efficiency loophole in the Bell theorem proof.

ACKNOWLEDGMENTS
The author is grateful to his hosts K.-E. Hellwig, Institut
für Theoretische Physik, Technische Universität Berlin,
and J. Summhammer, Atominstitut der Österreichischen
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