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Abstract

A loophole–free four photon EPR experiment requiring only 67% detection

efficiency which prepares independent photons into a non–maximal singlet–

like spin state by means of an asymmetrical beam splitter is proposed. The

experiment does not suffer from the usual poor net detection efficiency and

can therefore serve to close the low detection efficiency, the no enhancement ,

and the spacelike separation loophole.
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Recently the Bell issue of disproving local as well as nonlocal hidden–variables theories

has witnessed a renewed interest primarily because of two new techniques. One is the usage of

the fourth order interference for local [1–7] as well as non–local [8] hidden–variables theories

and the other is the recent improvement in the efficiencies of single–photon detectors [9].

That might permit a conclusive Einstein–Podolsky–Rosen experiment. An experiment with

maximally entangled photons can hardly be used for the purpose because it requires at least

83% detection efficiency [10] and the appropriate detectors are still not available. (83% being

an overall detection efficiency, the “appropriate” detectors mean the ones with over 90%

detector efficiency.) Therefore, Eberhard turned to nonmaximally entangled photons and

showed that for them only 67% detection efficiency is required. [11] He obtained his result by

employing an asymmetrical form of the Bell inequality for which he found angles of polarizers

for maximal values of the background that violated this Bell inequality for given efficiency

η. Kwiat, Eberhard, Steinberg, and Chiao [3] then used the result to make a proposal

for a loophole–free Bell inequality experiment, i.e., a Bell experiment without additional

assumptions which is an ultimate aim of Bell experiments since the very beginning of the

local reality issue. [12] In this paper we show that the coincidence probabilities obtained by

the fourth order interference at an asymmetrical beam splitter violate the usual Clauser–

Horne–like form of the Bell inequality with only 67% detection efficiency. This shows that the

afore–mentioned Eberhard’s asymmetrical form of the Bell inequality and the background

level he introduced are not essential for obtaining his result. Instead of the background

level one can use other parameters—in our case the reflectivity of a beam splitter—and

instead of an asymmetrical form of the Bell inequality one can use the usual symmetric

form. In addition, it is shown that, contrary to a widespread persuasion [3], a loophole–

free Bell experiment by means of two down–converted photons interfering at a symmetric

beam splitter is possible but with at least 86% detection efficiency. We also show that

in the proposal of Kwiat, Eberhard, Steinberg, and Chiao [3] the method of application of

Eberhard’s result by means of attenuating one of the beams incoming to a beam splitter runs

into unpredicted problems. Therefore we propose a four photon experiment which dispenses
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with attenuation and prepares two independent photons in a pure nonmaximal singlet–like

state instead. The preparation boils down to a projection on the four dimensional Hilbert

subspace of this singlet state carried out by actual recording of the other two (of four)

photons, thus solving the low detection efficiency, the no enhancement [12–14], and the

spacelike separation loophole.

The paper is organized in the following way. First, the formalism of the fourth order

interference at an asymmetrical beam splitter is briefly introduced in the plane wave presen-

tation. It serves us to formulate a symmetric Clauser–Horn–like as well as the asymmetric

Eberhard’s form of the Bell inequality and to show them equal and being violated starting

with 67% detection efficiency. At the same time we show that the birefringent analyzers

separate photons emerging from the same side of the beam splitter in such a way to enable

a conclusive violation of the Bell inequality already with 86% detection efficiency. Then

we show in which ways one can achieve a perfect control over photons emerging from the

beam splitter using two nonlinear type–II crystals. In the end we dwell on our four photon

proposal which enables one to prepare two of the four photons as Bell pairs (singlet states)

by recording coincident counts of the other two photons at an asymmetrical beam splitter.

To describe the behaviour of the photons at a beam splitter in the spin space we follow

the results obtained in Pavičić [5,6]. The signal and idler down–converted photons emerging

from a nonlinear crystal [see Fig. 1)] are parallelly polarized [1] and because we aim at an

entangled photon state we must use a polarization rotator for one of the beams. We set the

rotator at 900 to obtain the maximal number of photons emerging from the opposite sides

of the beam splitter as compared with those emerging from the same sides. The signal and

idler photons have no definite relative phases. So, there is no interference of the second order

but only of the fourth order which we describe in the second quantization formalism using

plane waves. [5] The state of incoming polarized photons is |Ψ〉 = |1x〉1|1y〉2 . The actions

of beam–splitter BS, polarizer P1, and detector D1 are taken into account by the following

outgoing electric field operators:
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Ê1 = (â1xtx cos θ1 + â1yty sin θ1) eik1·r1−iω(t−t1−τ1)

+i (â2xrx cos θ1 + â2yry sin θ1) eik̃2·r1−iω(t−t2−τ1) , (1)

where t2x is transmittance, r2
x is reflectance, tj is time delay after which photon j reaches BS,

τ1 is time delay between BS and D1, and ω is the frequency the photons. The annihilation

operators act as follows: â1x|1x〉1 = |0x〉1, â1x|0x〉1 = 0. Ê2 is defined analogously. Until

we arrive at our four photon proposal below, we limit ourselves to this idealized model

because the analysis of any specific, real experiment would involve complications irrelevant

to the questions of interest. For a realistic elaboration of Eqs. (1), (2), (3), (5), etc., by

means of wave packets we refer the reader to Reff. [4,6]. We only stress here that these

equations remain unchanged insomuch as all experimental parameters—in effect the lowered

visibility—are absorbed by η and cos φ below.

The probability of joint detection of two ordinary photons by detectors D1 and D2 is

P (θ1, θ2) = 〈Ψ|Ê†
2Ê

†
1Ê1Ê2|Ψ〉 = A2 + B2 − 2AB cos φ , (2)

where A = txty cos θ1 sin θ2, B = rxry sin θ1 cos θ2, and φ = (k̃2 − k1) · r1 + (k̃1 − k2) · r2 =

2π(z2 − z1)/L , where L is the spacing of the interference fringes (see Fig. 1). φ can be

changed by moving the detectors transversely to the incident beams as indicated by ‘↔’ in

Fig. 1. If we now introduce s = txty(t
2
xt

2
y + r2

xr
2
y)

−1/2 and r = rxry

txty
and assume positioning of

detectors so as to have φ = 0, probability (2) reads

P (θ1, θ2) = η2s2(cos θ1 sin θ2 − r sin θ1 cos θ2)
2 , (3)

where η is the (detector) efficiency. The probability tells us that the photons appear to be

in an entangled state whenever they emerge from two different sides of BS.

The probability of one ordinary and one extraordinary photon being detected by D1 and

D2⊥ (as enabled by birefringent polarizer P2) is given by

P (θ1, θ
⊥
2 ) = η2s2(cos θ1 cos θ2 + r sin θ1 sin θ2)

2 . (4)
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The singles–probability of detecting one photon by D1 and the other going through P2

and through either D2 or D2⊥ without necessarily being detected by either of them [obtained

by summing up Eqs. (3) and (4) and multiplying them by η for D1–detection] is

P (θ1,∞) = ηs2(cos2 θ1 + r2 sin2 θ1) , (5)

and analogously : P (∞, θ2) = ηs2(sin2 θ2 + r2 cos2 θ2) . (6)

The singles–probability of detecting one photon by D1 and the other going through P1

and D1 is (assuming tx = ty)

P (θ1 × θ1) =
ηs2r

2
sin2(2θ1) . (7)

Let us see the effect of these results on possible violations of, first, a Clauser–Horne–like

form and, secondly, Eberhard’s form of the Bell inequality: B ≤ 0. In the Clauser–Horne

form B is defined so as to satisfy [see Eqs. (3), (5), and (6)]

ηs2BCH ≡ P (θ1, θ2) − P (θ1, θ
′
2) + P (θ′1, θ

′
2) + P (θ′1, θ2) − P (θ′1) − P (θ2) ≤ 0 , (8)

where P (θ′1) = P (θ′1,∞) and P (θ2) = P (∞, θ2), as given by Eqs. (5) and (6). B of the

Eberhard’s form is, in effect, defined so as to satisfy [see Eqs. (3–5)]

ηs2BE ≡ P (θ1, θ2) − P (θ′1, θ
′
2) − P (θ1, θ

′⊥
2 ) − P (θ′⊥1 , θ2) − (1 − η)[P (θ1) + P (θ2)] ≤ 0 , (9)

where (1 − η)P (θ1) is the probability of one photon being detected by D1 and the other

reaching either D2 or D2⊥ but not being detected by them due to their inefficiency.

Either of the above two forms contains terms which depend on η only linearly, i.e.,

which relies on firing of only one of the two detectors under consideration. If we were able

to make a device which would assure that photons almost always reach detectors (in all

previous experiments under 15% of photons passed the pinholes of the detectors) and fire

them according to their η’s, we would have a loophole–free experiment (with η > 0.67),

i.e., an experiment without additional assumptions (e.g., the no enhancement assumption
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[12,13]). In the last part of the paper we propose such a device using four photons of which

two put the other two almost always through the pinholes of the detectors (which then react

or do not react according to their efficiency η).

Here, let us assume that we already do have such a source and that photons always reach

detectors upon emerging from the beam splitter. Then we have two possibilities: either both

photons sometimes exit the same side of the beam splitter or they never do so. If they never

do (as, e.g., in the experiment of Kwiat at al. [3]), with birefringent polarizers we can have a

perfect “control” over the photons in the sense that, e.g., when detector D1 is being triggered

(and D1⊥ did not react) we immediately know the conjugate photon finished either in D2

or in D2⊥. If the photons exit the same port sometimes, then only with a detector which

could tell two photons from one would be able to tell whether the conjugate photon finished

in D1 or in either D2 or D2⊥. (Such detectors are theoretically possible [15] but are still not

in use.) If we use detectors which cannot tell one photon from two (all experiments with

beam splitters carried out so far used such detectors) we shall call the photons taking part

in the experiment uncontrolled photons because a click of D1 can mean that the conjugate

photon finished in either D2 or D2⊥ but can also mean that both photons finished in D1.

The latter counts obviously do not belong to our statistics but we can nevertheless try to

see whether the Bell inequality can be violated even with such “intruder” counts. These

counts correspond to the probabilities given by Eq. (7) and when we introduce them [adding

them to the singles probabilities given by Eq. (6)] into Eqs. (8) and Eq. (9) we obtain the

following stronger Bell inequalities for uncontrolled photons:

B′
CH = BCH − r[sin2(2θ′1) + sin2(2θ2)]/2 ≤ 0 , (10)

B′
E = BE − r[sin2(2θ1) + sin2(2θ2)]/2 ≤ 0 , (11)

We now compare the two forms of the Bell inequality first for controlled photons [Eq. (8)

and Eq. (9)] and then for uncontrolled photons [Eq. (10) and Eq. (11)].

As for controlled photons we obtain Max[B](r, η) surfaces (by a computer optimization)

for both forms (8) and (9). As we can see in Fig. 2, there is no difference between them. The
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differences are 10−5 in average, for 100 iterations used in numerical calculations of maxima.

The angles for the two forms are, of course, not equal. The values above the B = 0 plane

mean violations of the Bell inequality. For r = 1 we obtain Max[B] = 0 for η = 0.828427

in accordance with the result of Garg and Mermin. [10] For r → 0 we obtain a violation of

the Bell inequality for any efficiency greater then 66.75%. Thereupon, we calculate η, first

from BCH = 0 and then from BE = 0. Again, [see Fig. 3] there is no difference between

the two forms. As an example, the Bell inequality given by Eq. (8) is violated for r = 0.33,

η = 0.76, θ1 = 118◦, θ1′ = 85◦, θ2 = 5◦, and θ2′ = 152◦.

As for uncontrolled photons we compare Eqs. (10) and (11). Both equations are violated

in the same way—starting with 85.8% efficiency—in opposition to the widespread belief that

“unless the detector can differentiate one photon from two... no indisputable test of Bell’s

inequalities is possible.” [3] Of course, when collecting counts of D1 for singles probabilities

P (θ1) one has to discard the counts obtained in coincidence with D1⊥. One obtains the

latter coincidence using birefringent polarizers. The efficiencies for uncontrolled photons are

shown as the upper curve in Fig. 3. Once again, there is no difference between the forms.

To give an example, the “stronger” Bell inequality given be Eq. (10) is violated for r = 1,

η = 0.9, θ1 = 32◦, θ1′ = −6◦, θ2 = 96◦, and θ2′ = 58◦.

The afore–mentioned control of all photons can be achieved automatically if photons

never emerge from the same side of a beam splitter and this is what Kwiat, Eberhard,

Steinberg, and Chiao [3] aimed at. We obtain their Mach–Zehnder–like set–up by sub-

stituting the nonlinear crystal in Fig. 1 with two type–II crystals (MZ–II inset in Fig. 1)

which down–convert collinear and orthogonally polarized signal and idler photons of the

same average frequencies (half of the pumping beam frequency). The cones of signal and

idler photons just touch each other along the outgoing pumping beam and this is the direc-

tion wherefrom we take signal and idler photons. The crystals are pumped by a 50:50 split

laser beam (filtered out before signal and idler photons reach detectors) whose intensity is

accommodated so as to give only one down–conversion at a chosen time–window. Since one

cannot tell which crystal a down–converted pair is coming from, the state of the photons
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incoming at the beam splitter must be described by the following superposition

|Ψ〉 =
1√
2

(|1x〉1|1y〉1 + f |1x〉2 |1y〉2) , (12)

where 0 ≤ f ≤ 1 describes attenuation of the lower incoming beam.

The joint D1–D2 probability is given [in an analogous way as in Eq. (2)] by

P (θ1, θ2) =
η2

2
[cos θ1 sin θ2(txry + f tyrx cos φ) + sin θ1 cos θ2(tyrx + f txry cos φ)]2 . (13)

The probability of both photons emerging from either the upper or the lower side of BS

is for φ = 180◦ (+) and φ = 0◦ (−) given, respectively, by

P (∞×∞) =
η2

2
[(txty ± frxry)

2 + (rxry ± ftxty)
2] . (14)

It is obvious from this equation that for the crosstalk tx = ry = 1 no photons emerge

from the same sides of the beam splitter (because of the relations t2x +r2
x = 1 and t2y +r2

y = 1

and their consequence: ty = rx = 0). For φ = 180◦ (−) and φ = 0◦ (+) Eq. (13) yields

P (θ1, θ2) =
η2

2
(cos θ1 sin θ2 ± f sin θ1 cos θ2)

2 . (15)

These two equations give the same Max[B] surface as also shown in Fig. 2.

Now Kwiat, Eberhard, Steinberg, and Chiao [3] claim that the crosstalk is not necessary

for φ = 0◦ ( [3], p. 3215, 1st col., last ¶). However, that would require that the conditions

rxry = ftxty and txty = frxry from Eq. (14) be simultaneously satisfied what is clearly

impossible for f < 1. Thus, the only way to make use of f < 1 for either φ = 0◦ or

φ = 180◦ is the crosstalk tx = ry = 1 and this is apparently difficult to control within

a measurement. [3] Besides, the problem of both photons reaching detectors (i.e., passing

their pinholes) remains unsolved. We therefore propose another set–up which dispenses with

attenuation and the no enhancement assumption and which resolves the problem of both

photons reaching detectors.

Schematic of the proposed experiment is given in Fig. 4. Two afore–discussed Mach–

Zehnder–like set–ups, MZ–II 1 and MZ–II 2, fed by a split laser beam act as two independent
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sources of two independent singlet pairs. As shown above, photons emerge only from the

opposite sides of the second beam splitter of MZ–II 1 and MZ–II 2. Two photons from each

pair interfere at the beam splitter, BS, of the event–ready preselector (see Fig. 4) and as a

result the other two photons, under particular conditions elaborated below, appear to be

in a nonmaximal singlet state although the latter photons are completely independent and

nowhere interacted. The state of the four photons immediately after leaving MZ–II 1 and

MZ–II 2 is

|Ψ〉 =
1√
2
(|1x〉1′ |1y〉1 − |1y〉1′ |1x〉1) ⊗

1√
2
(|1x〉2′|1y〉2 − |1y〉2′ |1x〉2) . (16)

The probability of detecting all four photons by detectors D1, D2, D1’, and D2’ is thus

P (θ1′ , θ2′ , θ1, θ2) = 〈Ψ|Ê†
2′Ê

†
1′Ê

†
2Ê

†
1Ê1Ê2Ê1′Ê2′ |Ψ〉 =

1

4
(A2 + B2 − 2AB cos φ) , (17)

where Ê1, Ê2, and φ are as given above, Êj′ = (âj′x cos θj′ + âj′y sin θj′)e−iω′

j
tj′ ; j = 1, 2;

A = Q(t)1′1Q(t)2′2 and B = Q(r)1′2Q(r)2′1; here Q(q)ij = qx sin θi cos θj − qy cos θi sin θj.

The assumed 100% visibility here is of course an oversimplification since a detection

cannot be carried out at a point (see Fig. 1) but only over a detector width ∆z. Therefore,

in order to obtain a more realistic probability we integrate Eq. (17) over z1 and z2 over ∆z

to obtain

P (θ1′ , θ2′ , θ1, θ2) =
1

4

∫ z1+∆z/2

z1−∆z/2

∫ z2+∆z/2

z2−∆z/2

[

A2 + B2 − 2AB cos[2π(z2 − z1)/L]
]

dz1dz2

=
1

4
(A2 + B2 − v2AB cos φ) , (18)

where v = [sin(π∆z/L)/(π∆z/L)]2 is the visibility of the coincidence counting. With detec-

tor pinhole width ∆z ≈ 0.1 one would obtain v ≈ 0.95 which in real experiments reduces

further to about 0.8 but that can be improved to 0.9. [16] So, the visibility itself is not a

problem once all photons reach detectors no matter whether they fire them or not (because

of detector inefficiency). What was the biggest problem in the two photon experiments

carried out so far was exactly that photons mostly did not reach detectors at all, i.e., that

they had a rather poor net detection efficiency which was always below 10%. The reason is
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that one cannot enlarge the pinholes in front of the detectors behind a beam splitter—that

would destroy the interference fringes. In our design, however, we use D1 and D2 to record

only those coincidence counts which really activate their counters. Whenever only D1 or

only D2 fires we discard all the corresponding data. So, we use the coincidence counts at BS

to prepare the other two photons into a Bell pair (singlet state). They enable us to adjust

pinholes ph (see Fig. 4) for the latter photons so as to form solid angles appropriately bigger

than the pinholes of D1, D1⊥, D2 and D2⊥ do. According to Eqs. (17) and (18) pinholes

ph are not needed at all but this is an oversimplified ideal case. In a real experiment ps’s

must be adjusted so as not to let through photons of slightly different frequency from other

unaccounted downconverted pairs. On the other hand, in a real experiment one has to take

into account that the probability of only one of MZ–II ’s in Fig. 4 emitting two photon pairs

is not negligible. In order to get rid of the latter counts when recording singles events, e.g.,

D1’, we first discard all data corresponding to the firing of both D1’ and D1’⊥ detectors.

Then we have to get rid of possible two photons firing D1’. We can do this by splitting

possible two–photon 1’ wave packet across an additional beam splitter and symmetrically

positioned two detectors on each of its sides. [2] Alternatively, we can do a real experiment

by using photons of different colours in a scheme which eliminates the possibility of having

two pairs emitted from one of the sources. [17] Let us in the end see how the event ready

preparation works.

Term 1/4 in Eq. (18) refers to firing of D1 and D2. Other 3/4 refer to D1 and D2⊥,

D1⊥ and D2, and D1⊥ and D2⊥. So, to get the probability of firing of D1’ and D2’ gated

(see Fig. 4) by firing of D1 and D2 we have to multiply the equation by 4: P (θ1′ , θ2′) =

4 P (θ1′, θ2′ , θ1, θ2). For φ = 0◦, θ1 = 90◦, θ2 = 0◦, and v → 1, Eq. (18) yields the following

nonmaximal singlet–like probability which permits a perfect control of photons 1′ and 2′:

P (θ1′ , θ2′) = η2s2(cos θ1′ sin θ2′ − r sin θ1′ cos θ2′)2 . (19)

This means that D1 and D2—while detecting coincidences—act as event–ready selectors

[12] and with the help of a gate (see Fig. 4) we can extract those 1′ and 2′ photons that
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are in a non–maximal singlet state, take them miles away, and carry out a loophole–free

Bell experiment by means of P1’, D1’, D1’⊥, P2’, D2’, and D2’⊥ with only 67% efficiency

in the limit r → 0. Then one can use fast optical switches to close the spacelike separation

loophole.
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[7] M. Pavičić, Phys. Lett. A 209, 255 (1995).

[8] L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. Lett. 66, 1111 (1991).

[9] P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Petroff, Phys.

Rev. A, 48, R867 (1993).

[10] A. Garg and N. D. Mermin, Phys. Rev. D 35, 3831 (1987).

[11] P. H. Eberhard, Phys. Rev. A, 47, R747 (1993).

[12] J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).

[13] J. F. Clauser and M. A. Horne, Phys. Rev. D, 10, 526 (1974).

[14] E. Santos, Phys. Rev. Lett. 66, 1388 (1991).
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FIGURES

FIG. 1. Beam splitter set–up and Mach–Zehnder–like set–up (when inset MZ–II is put in place

of NL; according to Ref. [9]). As birefringent polarizers P1 and P2 may serve Nicol, Glan–Thompson

or Wollaston prisms (which at the same time filter out the uv pumping beam in case of MZ–II).

FIG. 2. The surface Max[B] = Max[BCH ] = Max[BE ] [Eqs. (8) and (9)] for the optimal

angles of the polarizers. All the values above the B = 0 plane violate the Bell inequality B ≤ 0.

FIG. 3. Lower plot: η’s as obtained for B = BCH = BE = 0 from Eqs. (8) and (9). Upper

plot: η’s as obtained for B ′ = B′
CH = B′

E = 0 from Eqs. (10) and (11).

FIG. 4. Proposed experiment. Detectors D1, D1⊥, D2 and D2⊥ and their counters serve as the

event–ready preselector. MZ–II 1 and MZ–II 2 are Mach–Zehnder–like devices (shown in Fig. 1)

that serve as sources of singlet pairs. As birefringent polarizers P1’ and P2’ may serve Wollaston

prisms (which at the same time filter out the uv pumping beam). Pinholes ph form considerably

bigger solid angles than the pinholes of D1, D1⊥, D2 and D2⊥.
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Fig. 2

67  83       

       efficiency (%)   

0.20.40.60.8   1
r

-2

-1

0
0.41

B   

67  83       

       efficiency (%)    

0.20.40.60.8   1
r

-2

-1

0
0.41

B   

15



0 0.5 1
r        

            Minimal efficiencies at a beam splitter

0.66751 

       0.828427
0.858 

1 

efficiency           

Fig. 3

efficiencies
      with perfect control of photons

efficiencies
without control of photons     

16



17


