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Abstract. All Bell experiments carried out so far have had ten or more
times fewer coincidence counts than singles counts and this, in effect, means
a detection efficiency under 10%. Therefore, all these experiments relied only
on coincidence counts and herewith on additional assumptions. Recently,
however, Santos devised hidden variable models which do not obey the as-
sumptions and thus made the experiments inconclusive. This, as well as re-
cent improvements in detectors efficiencies, prompted an increasing interest
in the loophole–free Bell experiments which do not rely on additional assump-
tions and which originally stem from the idea of the event–ready detectors
(introduced by J.S. Bell) which would preselect Bell pairs ready for detection.
Till recently it was assumed that such detectors would distort the pairs. Here
we devise those that would not do so and propose an experiment which can
realistically improve the detection efficiency and visibility up to over 80%.
The set–up uses two nonlinear crystals of type–II both of which simultane-
ously downconvert a singlet–like pair. We combine one photon from the first
singlet with one from the second singlet at a beam splitter and consider their
coincidence detections. Detectors determine optimally narrow solid angles for
the downconverted photons. However, for their two companions (from each
singlet) we use five times wider solid angles or even drop pinholes altogether
and resort to frequency filters. So, we are able to realistically collect close
to 100% of them. The latter pairs—preselected by coincidence detection at
the beam splitter—appear entangled in (non)maximal singlet–like states, i.e.,
detectors at the beam splitter act as event–ready detectors for such Bell pairs.

1 Introduction

Although many convincing EPR (Einstein–Podolsky–Rosen) experiments violat-

ing the local hidden variable models and various forms of Bell inequalities were

performed in the past thirty years, an experiment involving no supplementary
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assumptions—usually called a loophole–free experiment—is still waiting to be car-

ried out. Until recently loophole–free experiments were not considered because

they require very high detection efficiency [4] and all experiments carried out till

now have had an efficiency under 10%[10,15]. On the other hand, the most impor-

tant supplementary assumption, the no enhancement assumption and the corre-

sponding postselection method were considered to be very plausible. Then Santos

devised [22–25] local hidden–variable models which violate not only the low detec-

tion loophole but also the no enhancement assumption as well as post–selection

loophole, and these models, as well as considerable improvements in techniques,

in particular, detector efficiencies, resulted in an interest into loophole–free experi-

ments. In the past two years several sophisticated proposals appeared which rely on

the recent improvement in the detection technology and meticulous elaborations of

all experimental details. [6,11,12,14,18] The first three use maximal superpostions

and require detection efficiency of at least 83% [7] and the other two use non-

maximal superpositions relying on recent results [5,19,20] which require only 67%

detection efficiency for them. All proposals are very demanding and at the same

time all but the last proposal invoke a postselection which is also a supplemen-

tary assumption. [25] In this paper we analyze several supplementary assumptions

and propose a feasible method of doing a loophole–free Bell experiment which re-

quires only 67% detection efficiency, can work with a realistic visibility, and uses

a preselection method for preparing non–maximally entangled photon pairs. The

preselection method is particularly attractive for its ability to employ solid angles

of signal and idler photons (in a downconversion process in a nonlinear crystal)

which differ up to five times from each other. This enables a tremendous increase

in detection efficiency—from 10% to over 80%—as elaborated below.

2 Bell inequalities and their supplementary assumptions

As we mentioned in the introduction the recent revival of the Bell issue has been

partly triggered by new types of local hidden variables devised by Santos [22,25]

which made all experiments carried out so far inconclusive. However, from the

very first Bell experiments it was clear that one day a conclusive loophole–free

experiment must be carried out. [3,4] At the time, such experiments were far from

being feasible and as a consequence all experiments so far relied on coincidental

detections and on an assumption that a subset of a total set of events would give
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the same statistics as the set itself . In other words no real experiment so far dealt

with proper probabilities, i.e., with ratios of detected events to copies of the physical

system initially prepared . [12] Let us see this point in some more details, first, for

the Clauser–Horne [3] form of the Bell inequality, and then for Hardy’s equality. [9]

We consider a composite system containing two subsytems in a (non)maximal

superposition. When a property is being measured on subsystem i by detector Di,

which has got an adjustable parameter ai corresponding to the property, the prob-

ability of an independent firing of one of the two detectors is p(ai) = N(ai)/N (i =

1, 2) and of simultaneous triggering of both detectors is p(a1, a2) = N(a1, a2)/N ,

where N(ai) is the number of counts at Di, N(a1, a2) is the number of coincident

counts, and N is the total number of the systems the source emits. Let a classical

hidden state λ determine the individual counts and the probabilities of individual

subsystems triggering the detectors: p(λ, ai) and p(λ, a1, a2). These probabili-

ties are connected with the above introduced long run probabilities by means of:

p(ai) =
∫

Γ ρ(λ)p(λ, ai)dλ (i = 1, 2) and p(a1, a2) =
∫

Γ ρ(λ)p(λ, a1, a2)dλ, where Γ

is the space of states λ and ρ(λ) is the normalized probability density over states λ.

The locality condition—which assumes that the probability of one of the detectors

being triggered does not depend on whether the other one has been triggered or

not—can be formalized as p(λ, a1, a2) = p(λ, a1)p(λ, a2). Clauser–Horne’s form of

the Bell inequality reads:

−A1 A2 ≤ p(λ, a1)p(λ, a2) − p(λ, a1)p(λ, a′
2) + p(λ, a′

1)p(λ, a′
2) + p(λ, a′

1)p(λ, a2)

−A2 p(λ, a′
1) − A1 p(λ, a2) ≤ 0 , (1)

where 0 ≤ p(λ, ai) ≤ Ai.

The experiments carried out so far invoked the no–enhancement assumption

Ai = p(λ,∞) (where ∞ means that a filter for a property corresponding to pa-

rameters ai is switched off), wherewith Eq. (1) after multiplication by ρ(λ) and

integration over λ yields

−1 ≤ p(a1, a2)

p(∞,∞)
− p(a1, a

′
2)

p(∞,∞)
+

p(a′
1, a

′
2)

p(∞,∞)
+

p(a′
1, a2)

p(∞,∞)
− p(a′

1,∞)

p(∞,∞)
− p(∞, a2)

p(∞,∞)
≤ 0 (2)

Thus—because of the low detection efficiency—all the experiments performed till

now measured nothing but the above ratios. Then Santos devised [22,23,25] hidden

variables based on p(λ, ai) > p(λ,∞) and left us only with the loophole–free option

A1 = A2 = 1 wherewith Eq. (1) yields

−1 ≤ p(a1, a2) − p(a1, a
′
2) + p(a′

1, a
′
2) + p(a′

1, a2) − p(a′
1) − p(a2) ≤ 0 . (3)
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The above cited loophole–free proposals used the right inequality which requires

83% detection efficiency for maximal superpositions and 67% detection efficiency

for nonmaximal ones. The left inequality always requires 83% detection efficiency

but it makes clear that if we want a loophole–free experiment we must always either

register or preselect practically all the systems the source emits in order to obtain

proper probabilities, i.e., ratios of detected events to the number of emitted systems .

An excellent test which immediately shows whether a particular experiment can be

loophole–free is to see whether we can obtain p(a1) ≈ p(a1,±) ≈ p(a1,∞), where

‘±’ means that a two–channel filter (corresponding to a property a and property

non–a), e.g., a birefringent prism, is used; ‘∞’ means that the filter has been taken

out altogether. Unfortunately all experiments carried out so far have p(a1) >

10 p(a1,∞). This applies to other approaches as well. E.g., Ardehali’s additional

assumptions [1,2] are weaker than the no enhancement assumption but that does

not help us in obtaining the proper probabilities. The latter is also true for the

Hardy’s equality experiment recently carried out by Torgerson, Branning, Monken,

and Mandel [27] although they misleadingly claim that their “method does not

depend on the use of detectors with high or even known quantum efficiencies.” [26]

Let us look at the experiment in some detail.

Torgerson, Branning, Monken, and Mandel argue, in effect, as follows. In a two–

photon polarization coincidence experiment at an asymmetric beam splitter one

can—assuming 100% efficiency—pick up the orientation angles of the polarizers so

as to have P (θ1, θ
′
2)/P (θ1) = 1 and P (θ′1, θ2)/P (θ2) = 1, i.e., polarization θ1 must

occur together with θ′2 and θ2 with θ′1. Classically, if θ1 and θ2 sometimes occur

together, then θ′2 and θ′1 should also sometimes occur together. In a quantum mea-

surement though, for a particular reflectivity of the beam splitter one can ideally

obtain P (θ1, θ2) > 0 together with P (θ′1, θ
′
2) = 0 which is a contradiction for a clas-

sical reasoning. When detection efficiency is far bellow 100% one can assume that

only coincidence data are relevant and substitute P (θ1, θ
⊥
2 )+P (θ1, θ2) for P (θ1). If

we define P (θ1, θ2) = N(θ1, θ2)/[N(θ1, θ
′
2) + N(θ1, θ

′⊥
2 ) + N(θ′⊥1 , θ′2) + N(θ⊥1 , θ′⊥2 )],

where N ’s are two–photon coincidence detections, for the considered experiment

we arrive at 98% efficiency. But, in doing so, we disregard first, that 2R(1 − R)

percent (44% for the chosen R) of photons emerge from the same sides of the

beam splitter, and secondly, that for the chosen source (LiIO3 type–I downcon-

verter) one has P (θ1) > 20[P (θ1, θ
⊥
2 ) + P (θ1, θ2)]. [16] Thus, we end up not with

P (θ1, θ
′
2)/P (θ1) ≈ 1 but with P (θ1, θ

′
2)/P (θ1) = 0.02. In other words, the experi-
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Figure 1: Lay–out of the proposed experiment. As the event–ready preselector
serves a beam splitter with detectors D1’ and D2’ and their counters which open
the gate (Pockells cells) for Bell pairs.

ment is not a candidate for the loophole–free type of Bell experiments although it

is one of the most convincing coincidence counts experiments carried out so far.

3 Experiment

A schematic representation of the experiment is shown in Fig. 1. Two independent

type–II crystals (BBO) act as two independent sources of two independent singlet

pairs. Two photons from each pair interfere at an asymmetrical beam splitter, BS

and whenever they emerge from its opposite sides, pass through polarizers P1’ and

P2’, and fire the detectors D1’ and D2’, they open the gate (activate the Pockels

cells) which preselects the other two photons into a nonmaximal singlet state. We

achieve the high efficiency (over 80%) by choosing optimally narrow solid angles

determined by the openings of D1’ and D2’ and five times wider solid angles deter-

mined by D1 and D2. [Type–II crystal, as a source of only one singlet pair [8,15],

suffers from low efficiency (at most 10%[15]) due to necessarily symmetric detector

solid angles.]

An ultrashort laser beam (a subpicosecond one) of frequency ω0 simultaneously

(split by a beam splitter) pumps up two nonlinear crystals of type–II producing in
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ph

Type-II crystal

Figure 2: Photons from the cones are mutually perpendicularly polarized and there-
fore the photons from the intersections of the cones are in a singlet–like state. We
chose pinhole ph five times bigger than the other one (determined by detectors
D1’ and D2’) so that for each photon which passed through the latter pinhole, its
companion photon will pass through ph.

each of them intersecting cones of mutually perpendicularly polarized signal and

idler photons of frequencies ω0/2 as shown in Fig. 2. The idler and signal photon

pairs coming out from the crystals do not have definite phases and therefore cannot

exhibit second order interference. However they do appear entangled along the cone

intersection lines because one cannot know which cone which photon comes from.

By an appropriate preparation one can entangle them in a singlet–like state. [15]

Their state is therefore

|Ψ〉 =
1√
2

(

|1x〉1|1y〉1′ − |1y〉1|1x〉1′

)

⊗ 1√
2

(

|1x〉2|1y〉2′ − |1y〉2|1x〉2′

)

. (4)

The outgoing electric–field operators describing photons which pass through beam
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Figure 3: Beam splitter BS detail from Fig. 1.

splitter BS and through polarizers P1’ and P2’ (oriented at angles θ1′ and θ2′ ,

respectively) and are detected by detectors D1’ and D2’ will thus read (see Fig. 3)

Ê1′ = (â1′xtx cos θ1′ + â1′yty sin θ1′) eik
1′ ·r1′−iω

1′ (t−t
1′−τ

1′ )

+ i (â2′xrx cos θ1′ + â2′yry sin θ1′) eik̃
2′ ·r1′−iω

2′ (t−t
2′−τ

1′ ) , (5)

where t2x, t2y are transmittances, r2
x, r2

y are reflectances, tj is time delay after which

photon j reaches BS, τ1′ is time delay between BS and D1’, and ωj is the fre-

quency of photon j. The annihilation operators act as follows: â1x|1x〉1′ = |0x〉1′ ,

â1x|0x〉1′ = 0. E2′ is defined analogously. Operators describing photons which

pass through polarizers P1 and P2 (oriented at angles θ1 and θ2, respectively), and

through Pockels cells and are detected by detectors D1 and D2 will thus read

Ê1 = (â1x cos θ1 + â1y sin θ1)e
−iω1t1 . (6)

E2 is defined analogously.

The probability of detecting all four photons by detectors D1, D2, D1’, and D2’

is thus

P (θ1′ , θ2′ , θ1, θ2) = η2〈Ψ|Ê†
2′Ê

†
1′Ê

†
2Ê

†
1Ê1Ê2Ê1′Ê2′ |Ψ〉

=
η2

4
(A2 + B2 − 2AB cosφ) , (7)

where η is detection efficiency; A = Q(t)11′Q(t)22′ and B = Q(r)12′Q(r)21′ ; here

Q(q)ij = qx sin θi cos θj − qy cos θi sin θj ; φ = (k̃2 − k1) · r1 + (k̃1 − k2) · r2 =
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2π(z2 − z1)/L; here L is the spacing of the interference fringes (see Fig. 3). φ can

be changed by moving the detectors transversally to the incident beams. Data for

this expression are collected by detectors D1’ and D2’ whose openings are not points

but have a certain width ∆z. Therefore, in order to obtain a realistic probability

we integrate Eq. (7) over z1 and z2 over ∆z to obtain

P (θ1′ , θ2′ , θ1, θ2) =
η2

4

z1+
∆z

2
∫

z1−
∆z

2

z2+
∆z

2
∫

z2−
∆z

2

[

A2 + B2 − 2AB cos
[2π(z2 − z1)

L

]

]

dz1dz2

=
η2

4
(A2 + B2 − v2AB cosφ) , (8)

where v =
[

sin(π∆z/L)/(π∆z/L)
]2

is the visibility of the coincidence counting.

We assume the near normal incidence at BS so as to have r2
x = r2

y = R and

t2x = t2y = T = 1 − R. Next we assume a symmetric position of detectors D1’

and D2’ with respect to BS and the photons paths from the middle of the crystals

so as to obtain φ = 0. [17,21] Representing photons by a Gaussian amplitude

distribution of energies we have shown in Ref. [21] that the visibility is reduced

when the condition ω1′ = ω2′ is not perfectly matched and when the coincidence

detection time is not much smaller than the coherence time. We meet the latter

demand by using a subpicosecond laser pump beam and the former by reducing the

size of the detector (D1’ and D2’) pinholes. By reducing the size of the detector

pinholes we reduce the number of events detected by D1 and D2 but, on the other

hand, this enables us to increase visibility of the Bell pairs at D1 and D2 by sizing

pinholes ph (see Fig. 2) so as to make solid angles five times wider than the pinholes

of D1’ and D2’. (Cf. Joobeur, Saleh, and Teich. [13]) Alternatively, we can put

ω0/2 filters (ω0 is the frequency of the pumping beam) in front of detectors D1 and

D2 and drop the pinholes ph altogether.

Let us now see in which way and when are all photons entangled. For R = T =

1/2 and v = 1 the probability Eq. (8) reads as

P (θ1′ , θ2′ , θ1, θ2) =
1

4
(A − B)2 =

1

16
sin2(θ1′ − θ2′) sin2(θ1 − θ2) . (9)

and if we take away polarizers P1’ and P2’ the following maximal entanglement

survives: P (∞′,∞′, θ1, θ2) = 1
8 sin2(θ1 − θ2). For an asymmetrical BS, however, if

we take away polarizers P1’ and P2’, we obtain only partially entangled state

P (∞′,∞′, θ1, θ2) =
1

4
[(T − R)2 + 2TR sin2(θ1 − θ2)] . (10)
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Thus, in order to obtain (non)maximal entangled state for an asymmetrical

beam splitter it is necessary to orient polarizers P1’ and P2’ so as to obtain a

corresponding “entangled” probability given by Eq. (7). For example, for φ = 0◦,

θ1′ = 90◦, and θ2′ = 0◦, Eq. (7) projects out the following (non)maximal singlet–

like probability:

P (θ1, θ2) = η2s(cos2 θ1 sin2 θ2 − 2vρ cos θ1 sin θ1 cos θ2 sin θ2 + ρ2 cos2 θ2 sin2 θ1)

≡ η2p(θ1, θ2) (11)

where s = T 2/(R2 +T 2), ρ = R/T , and where we multiplied Eq. (8) by 4 for other

three possible coincidence detections [(θ1′ ,θ⊥2′), (θ⊥1′ ,θ2′), and (θ⊥1′ ,θ⊥2′)] at BS and

by (R2 + T 2)−1 for photons emerging from the same side of BS.

The singles–probability of detecting a photon by D1 is

P (θ1) = ηs(cos2 θ1 + ρ2 sin2 θ1) ≡ ηp(θ1) . (12)

Analogously, the singles–probability of detecting a photon by D2 is

P (θ2) = ηs(sin2 θ2 + ρ2 cos2 θ2) ≡ ηp(θ2) . (13)

Introducing the above obtained probabilities into the Clauser–Horne inequality

(2) we obtain the following minimal efficiency for its violation.

η =
p(θ′1) − p(θ2)

p(θ1, θ2) − p(θ1, θ′2) + p(θ′1, θ
′
2) + p(θ′1, θ2)

. (14)

This efficiency is a function of visibility v and by looking at Eqs. (11), (12), and

(13) we see that for each particular v a different set of angles should minimize it.

A computer optimization of angles—presented in Fig. 4—shows that the lower

the reflectivity is, the lower is the minimal detection efficiency. Also, we see a rather

unexpected property that a low visibility does not have a significant impact on the

violation of the Bell inequality. For example, with 70% visibility and 0.2 reflectivity

of the beam splitter we obtain a violation with a lower detection efficiency than

with 100% visibility and 0.5 (ρ = 1) reflectivity.

A similar calculation can be carried out for the Hardy equalities given at the

and of Sec. 2. It can be shown that the lowest possible R, with only 5–10 standard

deviations, should be taken and not the one which gives the greatest P (θ1, θ2) > 0,

again because the impact of a low visibility is the lowest when the beam splitter is

the most asymmetrical. Thus our preselection scheme can be used for a loophole–

free “Hardy experiment” as well.
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Figure 4: Minimal detection efficiencies η necessary for a violation of the Bell–
Clauser–Horne inequality as functions of visibility v and of ρ = R/(1 − R), where
R is the reflectivity of the beam splitter.

4 Conclusion

Our elaboration shows that the recently found four–photon entanglement [18,21]

can be used for a realization of loophole–free Bell experiments . We propose a

set–up which uses two simultaneous type–II downconversions into two singlet–like

photon pairs. By combining two photons, one from each such singlet–like pair, at

an asymmetrical beam splitter and detecting them in coincidence we preselect the

other two completely independent photons into another singlet–like state—let us

call them ‘Bell pair ’. (See Figs. 1 and 3.) Our calculations show that no time

or space windows are imposed on the Bell pairs by the preselection procedure

and this means that we can collect the photons within an optimal solid angle. If

we take their solid angles five times wider than the angles of preselector photons

(determined by the openings of detectors D1’ and D2’—see Fig. 1), then we can
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collect all Bell pairs and at the same time keep a probability of the “third party”

counts negligible.

For our set–up we can use the result presented in Fig. 4 which enables a conclu-

sive violation of Bell’s inequalities with a detection efficiency lower than 80% even

when the visibility is under 70% at the same time. If we, however, agree that it is

physically plausible to take into account only those Bell pairs which are preselected

by actually recorded detections at the beam splitter (firing of D1’ and D2’), then

we can eliminate the low visibility impact altogether. In this case, we can set v = 1

and for a different set of angles obtain a conclusive violation of Bell’s inequalities

and Hardy’s equalities with still lower (under 70%) detection efficiency.

In the end, we stress that the whole device can also be used for delivering

ready–made Bell pairs in quantum cryptography and quantum computation and

communication.
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