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Two previously discovered effects in the intensity interference: a spin–

correlation between formerly unpolarized photons and a spin entanglement

at–a–distance between photons that nowhere interacted, have been used for

a proposal of a new preselection experiment . The experiment puts together

two photons from two independent singlets and makes them interfere at an

asymmetrical beam splitter. A coincidental detection of two photons emerg-

ing from different sides of the beam splitter preselect their pair–companion

photons (which nowhere cross each other’s path) into a nonmaximal singlet

state. The quantum–mechanical nonlocality thus proves to be essentially a

property of selection. This enables a loophole–free experimental disproof of

local hidden–variable theories requiring detection efficiency as low as 67% and

an exclusion of all nonlocal hidden–variable theories that rely on some kind

of a physical entanglement by means of a common medium.

S. Jeffers, S. Roy, J.–P. Vigier, and G. Hunter (eds.), The Present Status of the Quantum Theory

of Light (Kluwer Academic Publishers, Holland, 1996), pp. 311–322.
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I. INTRODUCTION

In the past ten years the fourth order interference of photons has been given a consid-

erable attention. [1–18] It proved to be a powerful tool for testing both local [2–12] and

nonlocal [13,14] hidden variable theories and it also revealed several new features of quan-

tum phenomena. The interference turned out to be a genuine quantum phenomenon which

does not have a proper classical counterpart as opposed to the interference of the 2nd order.

[3] In particular, its visibility reaches 100% (in contradistinction to the classical 50%) and

does not depend on the relative intensity of the incoming beams. [4]

The interference served us to recognize a beam splitter as a source of singlet photon

states and as a device for spin correlated interferometry even when incoming photons are

unpolarized. [8] We elaborate on this properties and introduce general beam splitter spin

formalism for different input states in Sec. II. In Sec. III we introduce the Bell inequalities in

such a way to enable us to close the remaining loopholes in the Bell theorem. These proper-

ties and elaborations open the way for the preselection experiment presented in Sec. IV. The

experiment is the first realization of the spin entanglement of independent photons which

do not have any common history.

II. INTERFEROMETRY WITH ASYMMETRICAL BEAM SPLITTERS

In the next subsection we use the second quantization formalism in order to describe

the fourth order interference of two incoming photons at a beam splitter without specifying

their input state. In the subsequent two subsections we consider three kinds of input states

and their outputs.

A. Formalism of a beam splitter and its output

In this subsection the only assumption we make about the input of a beam splitter is that

it consists of two input beams falling on the beam splitter. The beams contain altogether
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two photons but one of them might be empty while the other might contain two photons

(see Fig. 1). Let the state of incoming photons be |Ψ〉. Two particular special states will

be specified in the next two subsections. The actions of beam–splitter BS, polarizers P1,P2

and detection D1,D2,D1⊥,D2⊥ are taken into account by the outgoing electric field operators

which in the second quantization formalism one obtains in the following way.

FIG. 1. (a) Beam splitter fed by a down–converted photon pair coming out from a non–linear

crystal of type I (b) (Sec. II B) and by two superposed down–converted photon pairs (c) (Sec. IID).

Photon wave vectors form cones in space (d-f). For type I the same frequency cones coincide and

with pinholes ph as in (d) we ideally always get either both photons together and parallelly polarized

or none. Type II of the first kind (e) emit perpendicularly polarized photons; ph has them together

with the pump beam (ω0) which must be eliminated by a filter. Type II of the second kind (f),

which serves as a source for the main experiment, emits a superposition of perpendicularly polarized

photons through the shown ph because one cannot know which cones they belong to.

The polarization is described by means of two orthogonal scalar field components. The

scalar component of the stationary electric field operator in the plane wave interpretations

will read: Êj(rj, tj) = â(ω)eikj ·rj−iωtj , where ωj is the frequency of incoming photons, k is

the wave vector (k = ω/c), r is the radius vector pointing at detector D, t is the time at
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which a photon is detected, j = 1, 2 refer to a particular outcoming photon in question, and

the annihilation operators describe actions of detectors so as to act on the states as follows:

â1x|1x〉1 = |0x〉1, â†
1x|0x〉1 = |1x〉1, â1x|0x〉1 = 0, etc.

One can easily obtain [10] the electric outgoing field operators describing photons which

pass through beam splitter BS and polarizers P1,P2 and are detected by detectors D1,D2:

Ê1 = (â1xtx cos θ1 + â1yty sin θ1) eik1·r1−iω(t−t1−τ1)

+i (â2xrx cos θ1 + â2yry sin θ1) eik̃2·r1−iω(t−t2−τ1) , (1)

Ê2 = (â2xtx cos θ2 + â2yty sin θ2) eik2·r2−iω(t−t2−τ2)

+i (â1xrx cos θ2 + â1yry sin θ2) eik̃1·r2−iω(t−t1−τ2) , (2)

where tj is time delay after which photon j = 1, 2 reaches BS and τj is time delay between

BS and Dj.

The electric outgoing field operator describing photons which pass

through beam splitter BS and polarizers P1,P2 and are detected by detector D2⊥ reads

Ê⊥
2 = (−â2xtx sin θ2 + â2yty cos θ2) eik2·r2−iω(t−t2−τ⊥

2
)

+i (−â1xrx sin θ2 + â1yry cos θ2) eik̃1·r2−iω(t−t1−τ⊥

2
) , (3)

where τ⊥
2 is time delay between BS and D2⊥.

The probability of joint detection of two ordinary photons (see Fig. 1: denoted by o)

coming out from opposite sides of the beam splitter by detectors D1 and D2 is

P (θ1, θ2, φ) = 〈Ψ|Ê†
2Ê

†
1Ê1Ê2|Ψ〉, (4)

where φ = (k̃2 − k1) · r1 + (k̃1 − k2) · r2 = 2π(z2 − z1)/L , where L is the spacing of the

interference fringes. φ can be changed by moving the detectors transversely to the incident

beams as indicated by ‘↔’ in Fig. 1. θ1 and θ2 are the angles along which polarizers P1 and

P2 are oriented with respect to a chosen fixed direction.
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The probability of joint detection of two ordinary photons coming out from the same side

of the beam splitter, e.g., the lower one, by the detector D1 (in the experiment we dispense

with such a detection, but we do need the expression for the calculation) is

P (θ1 × θ1) = 〈Ψ|Ê†2
1 Ê2

1 |Ψ〉. (5)

And the probability of one ordinary and one extraordinary photon being detected by D1

and D2⊥ (as enabled by birefringent polarizer P2) is given by

P (θ1, θ
⊥
2 , φ) = 〈Ψ|Ê⊥†

2 Ê†
1Ê1Ê

⊥
2 |Ψ〉. (6)

B. Beam splitter fed by a down–converted photon pair

A laser beam of frequency ω0 pumps a nonlinear crystal of the first type NL–I producing

in it a down–converted pair of signal and idler photons of frequencies ω1 and ω2, respectively,

which satisfy the energy conservation condition: ω0 = ω1 + ω2. By means of appropriately

symmetrically (and as far away from the crystal as possible) positioned pinholes we select

half–frequency sidebands so as to have ω2 = ω1 [see Fig. 1(d)]. Idler and signal photons

coming out from the crystals do not have definite phases [15] with respect to each other

and consequently one cannot have a second order interference. Photons emerging from a

nonlinear crystal of the first type are parallelly polarized [16] and because we aim at a spin

correlated photon state we use a polarization rotator for one of the beams. One achieves the

best correlation with 900 rotation although for an asymmetrical beam splitter even 00 yields

a nonvanishing probability of photons emerging from opposite sides of the beam splitter. [8]

The state of the incoming polarized photons is thus given by |Ψ〉 = |1x〉1|1y〉2 .

Assuming φ = 0 (we can modify φ by moving detectors perpendicular to the light path

as indicated by ‘↔’ in Fig. 1) and introducing s = txty and r = rxry

txty
the probability of joint

detection of two ordinary [see Fig. 1(a)] photons by detectors D1 and D2 reads

P (θ1, θ2) = 〈Ê†
2Ê

†
1Ê1Ê2〉 = η2s2(cos θ1 sin θ2 − r sin θ1 cos θ2)

2 (7)
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where η is the (detection) efficiency. This probability tells us that the photons emerge from

the beam splitter correlated in polarization whenever they emerge from two different sides

of it.

The probability of one ordinary and one extraordinary photon being detected by D1 and

D2⊥ (as enabled by birefringent polarizer P2) is given by

P (θ1, θ
⊥
2 ) = η2s2(cos θ1 cos θ2 + r sin θ1 sin θ2)

2 . (8)

On the other hand in case of a symmetrical beam splitter photons emerge from it unpo-

larized. To convince ourselves let us look at the singles–probability of detecting one photon

by D1 and the other going through P2 and through either D2 or D2⊥ without necessarily

being detected by either of them [obtained by summing up Eqs. (7) and (8) and dividing

them by η for only D1 detection] is

P (θ1,∞) = ηs2(cos2 θ1 + r2 sin2 θ1) , (9)

and analogously:

P (∞, θ2) = ηs2(sin2 θ2 + r2 cos2 θ2) . (10)

We see that for r = 1, i.e., for a symmetrical beam splitter, Eq. (9) gives P (θ1,∞) = η/4,

i.e., the outgoing photon is unpolarized. In other words whenever photons emerge from

different sides of a symmetrical beam splitter they emerge anticorrelated in polarization

and unpolarized, i.e., they appear in a singlet state. It is therefore to be expected that

unpolarized balanced incoming photons also appear correlated in polarization. That this is

indeed the case we show in the next subsection.

And for a later use we give here the probability of both photons being detected at the

same side of the beam splitter by, e.g., D1 assuming ty = tx

P (θ1 × θ1) =
ηs2

2
sin2(2θ1) . (11)
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C. Beam splitter fed by two unpolarized photons

Sources of unpolarized light can be cascade atom processes, but even better, photons

emerging from the opposite sides of a symmetrical beam splitter (as we learned in the

previous subsection) or photons emerging from two type II crystals of the second order [17]

[from pinholes ph in Fig. 1(f)].

We obtain the general probability for unpolarized light, by calculating the mean value

given by Eq. (4) for four input states |1x〉1|1x〉2, |1x〉1|1y〉2, |1y〉1|1x〉2, and |1y〉1|1y〉2 and

adding them together. For ty = tx they sum up to the following correlation probability:

P (∞,∞; θ1, θ2, φ) =
η2s2

4
[1 + r2 − 2r cos2(θ1 − θ2) cosφ] . (12)

The correlation is maximal for a symmetric beam splitter for φ = 0 in which case we obtain:

P (∞,∞, θ1, θ2) =
1

8
sin2(θ2 − θ1) . (13)

D. Beam splitter fed by two superposed down–converted photon pairs

The main disadvantage of feeding a beam splitter by a down–converted photon pair is

that 50% of photons emerge from it from the same side [8] [see Eq. (11)]. Namely, detectors

still cannot (at least not efficiently enough) tell two photons from one and we therefore

cannot control photons. Such a control of photons would however be possible if photons

never appeared together from the same side of a beam splitter. This was achieved by Kwiat

et al . [18] Their scheme is shown in Fig. 1(c). Two type II crystals of the first order down–

convert two collinear and orthogonally polarized photons of the same average frequencies

(half of the pumping beam frequency). The crystals are pumped by a 50:50 split laser beam

(filtered out before reaching detectors) whose intensity is accommodated so as to give only

one down–conversion at a chosen time–window. Since one cannot tell which crystal a down–

converted pair is coming from, the state of the photons incoming at the beam splitter must

be described by the following superposition
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|Ψ〉 =
1√
2

(|1x〉1|1y〉1 + f |1x〉2 |1y〉2) , (14)

where 0 ≤ f ≤ 1 describes attenuation of the lower incoming beam.

The joint D1–D2 probability is given [as follows from Eq. (4)] by

P (θ1, θ2) =
1

2
[cos θ1 sin θ2(txry + f tyrx cos φ)

+ sin θ1 cos θ2(tyrx + f txry cos φ)]2 . (15)

The probability of both photons emerging from either the upper or the lower side of BS

is for φ = 180◦ (+) and φ = 0◦ (−) given, respectively, by

P (∞×∞) = (txty ± frxry)
2 + (rxry ± ftxty)

2 . (16)

We see that for the crosstalk ty = rx = 0 and φ = 180◦ we obtain:

P (θ1, θ2, 180◦) = η2(cos θ1 sin θ2 − f sin θ1 cos θ2)
2 , (17)

which is functionally equivalent to Eq. (7) and has the advantage of giving a perfect control

of photon as follows from Eq. (16) which yields P (∞×∞) = 0. The main disadvantage of

this solution, however, is that the crosstalk is very difficult to control in the laboratory [18].

Kwiat et al . wanted to go around this problem by choosing φ = 0◦ but this does not help

either, as we show in the next section.

III. BELL INEQUALITIES

No Bell experiment carried out so far could conclusively disprove hidden–variable theories

without additional assumptions. [19] Cascade photon pair experiments have to rely on the

no enhancement assumption (made by Clauser and Horne [20]: a subset of a total set of

events gives the same statistics as the set itself ) because the directions of photons in the

process (which is a three–body decay) are uncontrollable. The fourth order interference, on

the other hand, provides directional photon correlation but it was believed that one has to

discard 50% of counts which correspond to photons emerging from the same sides of a beam
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splitter. Therefore Kwiat et al . [18] and we [9,11] devised two different schemes that, on

the one hand, do not require discarding of counts and, on the other, reduce the required

efficiency to (ideally) 67% which is 16% lower than the previously required efficiency of 83%.

[21] We devised the preselection experiment which we present in Sec. IV but which is, in

effect, based on a recognition of a possibility to obtain nonmaximally entangled photons

by means of coefficients of transmission and reflection as elaborated in Secs. IIA and IIB.

Kwiat et al ., on the other hand, used Eberhard’s result [12] in order to make a proposal

for a loophole–free Bell inequality experiment which we present below and in Sec. IID.

Eberhard considered nonmaximally entangled photons and showed that for a violation of

the Bell inequality only 67% efficiency is required. He obtained his result by employing an

asymmetrical form of the Bell inequality for which he found angles of polarizers that violated

this Bell inequality only after he set efficiency η to particular values and connected it to the

background level.

To compare the two approaches let us first look at the usual Clauser–Horne form and

then at Eberhard’s form of the Bell inequality: B ≤ 0. In the Clauser–Horne form B is

defined so as to satisfy [see Eqs. (7), (9), and (10)]

ηs2B ≡ P (θ1, θ2) − P (θ1, θ
′
2) + P (θ′1, θ

′
2) + P (θ′1, θ2) − P (θ′1) − P (θ2) , (18)

where P (θ′1) = P (θ′1,∞) and P (θ2) = P (∞, θ2), as given by Eqs. (9) and (10). B of

the Eberhard’s form is, in effect, defined so as to satisfy [see Eqs. (17) and the equations

corresponding to Eqs. (8) and (9)—with s = 1 and r = f ]

ηs2B ≡ P (θ1, θ2) − P (θ′1, θ
′
2) − P (θ1, θ

′⊥
2 ) − P (θ′⊥1 , θ2)

−(1 − η)[P (θ1) + P (θ2)] , (19)

where (1 − η)P (θ1) is the probability of one photon being detected by D1 and the other

reaching either D2 or D2⊥ but not being detected by them due to their inefficiency. In other

words, to be able to use either of the above forms we have to have a perfect control of all

photons at BS. As we stressed in Sec. IID, Kwiat et al . do achieve this control but at the
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expense of the crosstalk. They also claim that the choice φ = 0◦ would preserve the control

and at the same time dispense with the crosstalk. Unfortunately, this does not work what

can be easily seen from Eq. (16). To obtain P (∞×∞) = 0 one has to satisfy rxry = ftxty

and txty = frxry what is however clearly impossible for f < 1. Thus, contrary to the claims

of Kwiat et al . [18], the only way to make use of f < 1 for either φ = 0◦ or φ = 180◦ is the

crosstalk ty = rx = 0 and this is apparently difficult to achive within a measurement. [18]

It seems that the set–up is ideal for a loophole–free experiment with maximal non–product

states, i.e., with f = 1 and η > 83% but that attenuation (f < 1) is not the best candidate

for Bell’s event–ready preselector [20]. We therefore propose another “event–ready set–up”

which dispenses with variable f , enables a full control of photons, and offers a fundamental

insight into the whole issue.
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FIG. 2. The surface Max[B] [Eqs. (18) and (19)] for the optimal angles of the polarizers. Values

above the B = 0 plane violate the Bell inequality B ≤ 0.
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FIG. 3. Lower plot: η’s as obtained for B = 0 from Eqs. (18) and (19). Upper plot: η’s

as obtained for B = r[sin2(2θ′1) + sin2(2θ2)]/2 from Eqs. (7), (9), (10), and (18), and for

B = r[sin2(2θ1) + sin2(2θ2)]/2 from Eqs. (7), (8), (9), (10), and (19).

But before we dwell on the experiment itself let us first compare the two afore–introduced

forms of the Bell inequality in two ways. First, we obtain Max[B](r, η) surfaces (by a

computer optimization of angles) for both forms (18) and (19). As we can see in Fig. 2,

there is no difference between them although the maxima were achieved for different angles.

(The differences are 10−5 in average, for 100 iterations used in numerical calculations of

maxima.) The values above the B = 0 plane mean violations of the Bell inequality. For

r = 1 we obtain Max[B] = 0 for η = 0.828427 in accordance with the result of Garg and

Mermin. [21] For r → 0 we obtain a violation of the Bell inequality for any efficiency greater

then 66.75%. Secondly, we calculate η by setting B = 0, first, from Eq. (18) and then from

Eq. (19). Again, [see Fig. 3] there is no difference between the two forms. We can also

see that there is no need to optimize the angles only after values for η have been fixed,

contrary to the claim from Ref. [12]. The efficiencies for uncontrolled photons are shown as

the upper curve in Fig. 3. Once again, there is no difference between the forms. On the

other hand, we see that uncontrolled photons, i.e., the ones that may emerge from the same

sides of BS as well, violate the Bell inequality—starting with 85.8% efficiency—in opposition

to the widespread belief that “unless the detector can differentiate one photon from two...
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no indisputable test of Bell’s inequalities is possible.” [18]

IV. PRESELECTION EXPERIMENT

A schematic representation of the experiment is shown in Fig. 4. Two independent

sources S1 and S2 simultaneously emit two independent entangled pairs. Left photons from

each pair fly towards detectors D1’ or D1’⊥ and D2’ or D2’⊥. Right photons from each pair

interfere at an asymmetrical beam splitter which acts as an event–ready preselector and as a

result the so preselected left photons, under particular conditions elaborated below, appear

to be in a nonmaximal singlet state although the latter photons are completely independent

and nowhere cross each other’s path. There are several possible sources for such an entangled

state of photons.
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FIG. 4. Proposed experiment. As the event–ready preselector, serves a beam splitter with

detectors D1, D1⊥, D2 and D2⊥ as shown in Fig. 1. S1 and S2 are sources (type II crystals as

explained in the text) emitting singlet–like photon pairs. As birefringent polarizers P1’ and P2’

may serve Wollaston prisms (which at the same time filter out the uv pumping beam).

Atoms exhibiting cascade emission. The atoms of the two sources could be pumped to an

upper level by two independent lasers. This level would decay by emitting two photons

correlated in polarization in a triplet–like state. The independence of the two sources can

be assured by slight differences in central frequency and drift of the two pump lasers. The

sources have been elaborated by Pavičić and Summhammer and an experiment with such

sources was estimated to be very difficult to carry out. [7]

Symmetrical beam splitters fed by two nonlinear crystals of type I. The experiment with

such sources relies on quadruple recording obtained in the following way: whenever exactly

two of the preselection detectors D1–D2⊥ fire in coincidence (see Fig. 4) a gate for counters

D1’–D2’⊥ opens. In case only one or none of the so preselected D1’–D2’⊥ detectors fires we

discard the records. In case exactly two of four D1’–D2’⊥ detectors fire, the corresponding

counts contribute to our statistics. The sources have been elaborated by Pavičić [9] and an

experiment with such sources was found to be rather demanding. Besides, the procedure of

discarding data is a no enhancement assumption and the experiment cannot be considered

a loophole–free one,

Symmetrical beam splitters in a crosstalk fed by two “superposed” crystals of type II. The

experiment with such sources, emitting photons in a singlet like state, relies only on the

preselection detectors D1–D2⊥. When they fire in coincidence (see Fig. 4) a gate for counters

D1’–D2’⊥ opens. In case only one of the so preselected D1’–D2’⊥ detectors fires we do not

discard the records but use them to form frequencies approximating one–photon probabilities

in the Bell inequalities formed by Eq. (18) and Eq. (19). The whole set–up would apparently

be difficult to tune in because of the crosstalk [18] but this nevertheless seem to be a feasible

loophole–free Bell experiment.
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Crystals of type II of the second order. These crystals emit perpendicularly polarized

photons into two intersecting cones as shown in Fig. 1(f). If we position pinholes ph at

the intersections we shall obtain superposition of perpendicularly polarized photons, i.e.,

photons in a singlet–like state because one cannot know which cones they belong to. The

sources seem to enable a rather feasible loophole–free Bell experiment. [17]

In what follows we shall adopt the latter two kinds of sources. Thus the state of photons

immediately after leaving the sources S1 and S2 is given by a tensor product of two singlet–

like states:

|Ψ〉 =
1√
2
(|1x〉1′ |1y〉1 − |1y〉1′ |1x〉1) ⊗

1√
2
(|1x〉2′|1y〉2 − |1y〉2′ |1x〉2) . (20)

The probability of detecting all four photons by detectors D1, D2, D1’, and D2’ is thus

P (θ1′ , θ2′ , θ1, θ2) = 〈Ψ|Ê†
2′Ê

†
1′Ê

†
2Ê

†
1Ê1Ê2Ê1′Ê2′ |Ψ〉

=
1

4
(A2 + B2 − 2AB cos φ) , (21)

where Ê1, Ê2, and φ are as given above, Êj′ = (âj′x cos θj′+âj′y sin θj′) exp(−iω′
jtj′); j = 1, 2;

A = Q(t)1′1Q(t)2′2 and B = Q(r)1′2Q(r)2′1; here Q(q)ij = qx sin θi cos θj − qy cos θi sin θj.

For φ = 0◦, θ1 = 90◦, and θ2 = 0◦ Eq. (21) yields (non)maximal singlet–like probability

P (θ1′ , θ2′) given by Eq. (7) which permits a perfect control of photons 1′ and 2′. This means

that D1 and D2—while detecting coincidences—act as event–ready preselectors and with the

help of a gate (see Fig. 4) we can extract those 1′ and 2′ photons that are in a non–maximal

singlet state, take them miles away and carry out a loophole–free Bell experiment by means

of P1’, D1’, D1’⊥, P2’, D2’, and D2’⊥ with only 67% efficiency in the limit r → 0.
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