Energy and Isospin Dependence of Elliptic Flow - An Alternative Analysis of the LAND-FOPI Data

<u>Maja Zoric</u>, Dr. Yvonne Leifels 18. 10. 2009

Outline :

- Description of the experimental setup
- Available statistics
- Data analysis (n/H)
 - pt integrated v2
 - differential squeeze-out v2(pt)
 - squeeze-out ratio
- Consistency checks, evaluation of systematic errors
- Conclusions and Prospects

Relevant variables

Normalised transverse momentum

$$pt0 = p_{\perp,part}/p_{proj}$$

Rapidity

$$y = 0.5ln \left(\frac{1+\beta_z}{1-\beta_z}\right)$$

• Normalised rapidity

$$y0 = y_{part}/y_{proj}$$

•Q - vector

$$\vec{Q} = \sum_{\nu} w_{\nu} \vec{p}_t(\nu)$$

$$w_{\nu} = 1$$
 $y > y_{cm}$, $w_{\nu} = -1$ $y < y_{cm}$

p _{proj} /MeVc ⁻¹	Y _{proj}	E/MeV
432	0.896	400
529	1.0815	600
610	1.2313	800

Description of the experimental setup

LAND: •Velocity vectors of neutrons and light charged particles •Mass determination from total deposited energy

PLAWA: •Charge from Δ E-TOF •Reaction plane determination from total transverse momentum of charged particles LAND 1: θ lab=45°±8° PLAWA: 1°≤ θ lab≤30° LAND 2: θ lab=73°±12°

Statistics overview

	total evt.	evt. cut	particles	part. cut	n	Н	(× 10 ⁵)
400 MeV/u	18.0	30 %	12.3	6.6	2.8	2.9	no shadow bar
	2.4	26 %	0.9	0.32	0.01	0.004	shadow bar 1
	4.7	23 %	1.2	0.14	0.1	0.03	shadow bar 2
600 MeV/u	23.4	40 %	28.3	18.9	8.6	8.8	no shadow bar
	8.7	40%	7.5	0.3	0.18	0.06	shadow bar 1
	8.0	43 %	5.8	1.2	0.8	0.36	shadow bar 2

	13.7	38 %	17.2	9.7	4.8	4.0	no shadow bar
800 MeV/u	5.0	38 %	4.6	0.12	0.08	0.03	shadow bar 1
	7.4	41 %	5.6	0.98	0.62	0.3	shadow bar 2

Details of analysis procedure

 5 PLAWA multiplicity and 5 ERAT bins

 ERAT 5: Identical cross section for last bin of both observables

$$ERAT = \frac{\sum_{part.} E_{\perp}}{\sum_{part.} E_{\parallel}}$$

 $F(\Delta\phi) = N(1 + 2(v1cos(\Delta\phi) + v2cos(2\Delta\phi)))$

Details of analysis procedure

- Correction on detector acceptance and efficiency included
- Substraction of normalised shadow bar run data
- Correction of anisotropic asymuthal distribution of reaction plane after applied trigger cuts
- Corrected weights calculated for each shadow/ non shadow bar run data

Details of analysis

 5 equidistant bins in normalised rapidity and transverse momentum

Consistency checks

 The symmetry in v2 observable was checked for two symmetric windows in detector acceptance, for y0 and pt0-dependence (in the next slide!)

Consistency checks

pt integrated v2: a comparison between n and H

400 MeV/u

Azimuthal distributions for PT bins

E = 400 MeV/u, central events (PM3+PM4+PM5) $F(\Delta\phi) = N(1 + 2(v1cos(\Delta\phi) + v2cos(2\Delta\phi)))$

Squeeze-out ratio definition

Two alternative definitions of squeeze-out ratio

$$R_N = \frac{N(90^\circ) + N(270^\circ)}{N(0^\circ) + N(180^\circ)} \qquad \qquad R_N = \frac{1 - 2v_2}{1 + 2v_2}$$

- Squeeze-out ratio observable chosen because it exibits stable trend in pt0-dependence
- Number of particles corresponding to the particular angle integrated within the finite range
- The integration range was varied to test the stability of result

Comparison between the two methods

Integration range chosen to be ±10 ° for 400 and 600 MeV/u, and ± 6.7 ° for 800 MeV/u, yielding the best agreement between two methods

 A comparison between two methods of obtaining R_N shows satisfactorly agreement. The results are shown for 400 MeV/u

Energy and isospin dependence of differential squeeze-out ratio

- Ratio of squeeze-out ratios is more stable with change of an integration range than the squeeze-out ratio itself
- High energy data more stable with the change of integration range

Comparison to the previous analyses

A comparison to
D.Lambrecht paper Z. Phys.
A 350 (1994) on momentum
dependence shows
satisfactorly agreement

•The results of W.Trautmann analysis arXiv: 0907.2822 confirmed (at 400 MeV/u)

Conclusions

- Present analysis comfirms previous results on differential elliptic flow
- A shift in v1-y0 dependence becomes smaller after applied correction on reaction plane asymuth distribution
- The squeeze-out ratio could show isospin sensitivity of elliptic flow

Future prospects

- UrQMD simulations on squeeze out ratio depencies as function of beam energy
- Extension of present analysis to protons
- Detailed calculation of reaction plane resolution

I would like to thank Dr. Y. Leifels from GSI, Darmstadt, for a valuable guidance during the course of the analysis and Dr. Z. Basrak from IRB, Zagreb for an important discussions. Also I would like to thank Peter Z. Wu for providing the software basis for this analysis.

Thank you for your attention!