

Symmetry Energy: Importance at different density ranges

$$E(\rho_B, I) / A = E(\rho_B) + \frac{E_{sym}(\rho_B)I^2 + O(I^4) + \dots}{E_{sym}(\rho_B)I^2}$$

 \rightarrow pions π + vs. π -

 $I = \frac{N - Z}{-}$

N + Z

→ strangeness K⁺ vs. K⁰

The Nuclear Symmetry Energy in different Models

Treatment of symmetry energy in RMF: ρ and δ meson

Sensitivity to Symmetry Energy in Heavy Ion Collisions

Difference in neutron and proton potentials

- "direct effects": difference in proton and neutron (or light cluster) emission and momentum distribution → M. Di Toro
- 2. "secondary effects": production of particles, isospin partners

1. Mean field effect: U_{sym} more repulsive for neutrons, and more for asystiff

 \rightarrow pre-equilibrium emission of neutron, reduction of asymmetry of residue

2. Threshold effect, in medium effective masses:

 $\rightarrow m_{N,}^{*}, m_{\Delta}^{*}$, contribution of symmetry energy; m_{K}^{*} , models for K-potentials

time dependence of Δ , π , and K production

1. Fast neutron emission: "mean field effect"

 $\frac{n}{p} \downarrow \Rightarrow \frac{Y(\Delta^{0,-})}{Y(\Delta^{+,++})} \downarrow \Rightarrow \frac{\pi^{-}}{\pi^{+}} \downarrow \ decrease: NL \to NL\rho \to NL\rho\delta \quad \text{Tr} or$

This should depend also on momentum dependence

2. C.M. energy available: "threshold effect"

 $\begin{aligned} \varepsilon_{n,p} &= E_{n,p}^{*} + f_{\omega}\rho_{B} \mp f_{\rho}\rho_{B3} & \text{Vector self energy + for n and - for p} \\ s_{nn}(NL) &< s_{nn}(NL\rho) < s_{nn}(NL\rho\delta) \\ s_{pp}(NL) &> s_{pp}(NL\rho) > s_{pp}(NL\rho\delta) & \sigma = \sigma(s_{in} - s_{th}) & \frac{\pi^{-}}{\pi^{+}} \uparrow \text{ increase } NL \to NL\rho\delta \end{aligned}$

The Threshold Effect: $nn \rightarrow p\Delta^{-} vs pp \rightarrow n\Delta^{++}$

What is conserved is not the effective E^{*}, p^{*} momentum-energy but the canonical one.

Pion production

Equilibrium production (box results)

Ferini, NPA762(2005) 147

Finite nucleus simulation:

Au+Au, semicentral

 π^{-}

 $\overline{\pi^+}$

much below thermodynamic limit, non-equiibration

Pion ratios in comparison to FOPI data

W.Reisdorf et al. NPA781 (2007) 459

Ferini, NPA762(2005) 147

Zhigang Xiao et al. PRL 102, 062502 (2009)

Transverse Pion Flows

Antiflow: Decoupling of the Pion/Nucleon flows

Directed and Elliptic Flow:

Au+Au, 0.8 AGeV, midrapidity, as function of centrality

Kaon Production:

A good way to determine the symmetric EOS (C. Fuchs et al., PRL 86(01)1974)

Main production mechanism:

NN→BYK

 $\pi N \rightarrow YK$

Also useful for Isovector EoS?

- -charge dependent thresholds
- in-medium effective masses
- -Mean field effects

Strangeness ratio : Infinite Nuclear Matter vs. HIC

Pre-equilibrium emission (mainly of neutrons) reduced asymmetry of source for kaon production \rightarrow reduces sensitivity relative to equilibrium (box) calculation

Au+Au central: Pi and K yield ratios vs. beam energy

Pions: less sensitivity ~10%, but larger yields

G.Ferini et al., PRL 97 (2006) 202301

Kaon ratios: comparison with experiment

G. Ferini, et al., NPA762(2005) 147 and PRL 97 (2006) 202301

In-medium Klein-Gordon eq. for Kaon propagation:

$$\left[\left(\partial_{\mu} + iV_{\mu} \right)^2 + m_K^{*2} \right] \phi_K(x) = 0$$

Two models for medium effects tested:

Kaon production and data (Kaos and FOPI)

Ni+Ni system

0.05

0.04

0.03 (X) 0.02 (V) 0.02 (X)

0.01

1.5

Au+Au system

Test of kaon potentials models

Two models for medium effects tested:

1. Chiral perturbation (Kaplan, Nelson, et al.) (ChPT)

2.One-boson-exch. (Schaffner-Bielich, et al.,) (OBE)

→density and isospin dependent

***• In-Medium K energy (k=0)

$$E_K(\mathbf{k}) = k_0 = \sqrt{\mathbf{k}^2 + m_K^{*2}} + V_0$$

Ratios to minimze influence of σ_{eff} kaon potentials

Summary:

 particle production is an interesting alternative to the determination of the high density symmetry energy in heavy ion collisions

• the production is sensitive to to mean field and threshold effects, which depend on the symmetry energy, but also on the modelling of other input, as e.g. the Δ -sector

• thus question for the pion ratio must still be considered open.

 the strangeness sector is promising since the reaction mechanism is more transparent

