Isotopic Flows in Au+Au at 400 A MeV

W. Trautmann GSI Helmholtzzentrum, Darmstadt, Germany

- I. Collective flow and the symmetry energy at supra-saturation density
- II. First results from the FOPI (Phase I)-LAND experiment

UrQMD, Q.F. Li et al.

I. why collective flows

 Ψ (azimuthal event) distributions in the plane of directed flow

J. Łukasik et al., PLB 608 (2005)

motivation 1: probes of high-density stage ?

Bao-An Li, PRL 88, 192701 (2002)

motivation 2: can LAND be used to measure differential neutron-proton flows ?

neutron and proton detection with the same device and method

motivation 2: can LAND be used to measure differential neutron-proton flows ?

neutron and proton detection with the same device and method

motivation 3: high quality of excitation functions of flow

elliptic flow v_2

¹⁹⁷Au + ¹⁹⁷Au, data from INDRA, FOPI, AGS experiments

from A. Andronic et al., EPJA 30 (2006)

10/16/2009 W. Trautmann, GSI Helmholtzzentrum, HiDeSymE, Zagreb

motivation 5: UrQMD predictions for elliptic flow

UrQMD: negligible sensitivity to directed flow

UrQMD: negligible sensitivity to directed flow

II. First results from FOPI/LAND experiment

Au+Au 400 A MeV

neutron squeeze-out: Y. Leifels et al., PRL 71, 963 (1993)

negligible sensitivity to directed flow

negligible sensitivity to directed flow

p_t dependence of v_2

UrQMD: sensitivity of v_2

UrQMD: sensitivity of v_2

p_t dependence of v_2

Data:

- (PM3-PM5, 0.25<y/y_p<0.75)
- $|v_2|$ increases as expected
- reproduced by UrQMD (b<7.5 fm)
- but 15% correction missing

let's look at ratios only: - large errors at large p_t - UrQMD: decreasing sensitivity at $p_t > 0.8$

result from neut/hydro ratios:

- $<\gamma > = 0.94 \pm 0.21$
- potential part just below linear

analysis of isospin diffusion and n/p ratios in ^{112,124}Sn cross bombardments at 50 A MeV M.B. Tsang et al., PRL 102, 122701 (2009)

HIC isospin diffusion and n/p ratios PRL 102 (2009) IAS isobaric analog states, Danielewicz and Lee, NPA 818 (2009) PDR pygmy dipole resonance, Klimkiewicz et al., PRC 76 (2007) analysis of isospin diffusion and n/p ratios in ^{112,124}Sn cross bombardments at 50 A MeV M.B. Tsang et al., PRL 102, 122701 (2009)

flow ratios + UrQMD: $<\gamma> = 0.94 \pm 0.21$ $S_0/L = 34/87 \pm 13$ MeV or 30/79 ± 10 MeV

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Differential neutron-proton squeeze-out

W. Trautmann^{a,*}, M. Chartier^b, Y. Leifels^a, R.C. Lemmon^c, Q. Li^d, J. Łukasik^e, A. Pagano^f, P. Pawłowski^e, P. Russotto^g, P. Wu^b

^a GSI Darmstadt, D-64291 Darmstadt, Germany
^b University of Liverpool, Liverpool L697ZE, United Kingdom
^c STFC Daresbury Laboratory, Warrington, WA4 4AD, United Kingdom
^a FIAS, Universität Frankfurt, D-60438 Frankfurt am Main, Germany
^e IFJ-PAN, Pl-31 342 Kraków, Poland
^f INFN-Sezione di Catania, I-95123 Catania, Italy
^g INFN-LNS and Università di Catania, I-95123 Catania, Italy

 $\gamma = 0.6 \pm 0.3$ (from PM3 only)

test of systematic uncertainties

physical parameters: impact parameter transverse momentum rapidity

data analysis: various sorting gates include protons separately background subtraction $\Delta \gamma < 0.1 \ (p_t < 0.8 \text{ vs. } p_t < 1.2 \text{ GeV/c})$ $\Delta \gamma < 0.15 \ (for PM3-5)$ statistics not really sufficient to evaluate errors more precisely

 $\Delta \gamma = 0.43 \pm 0.32$ (PM3 vs. PM3-5)

 $\Delta \gamma < 0.1$ $\Delta \gamma$ negligible (protons not sensitive) $\Delta \gamma = 0.21$ (100% vs. 60% of measured background)

UrQMD: Pauli blocking (y/n) constant S_0 (= a_4)

 $\Delta \gamma = 0.08$ (for PM3-5) $\Delta \gamma = 0.07$ (S₀=22 vs. S₀=18 MeV)

 v_2 in PM5 is not as small as expected, possibly due to lacking experimental impact-parameter resolution

test of cluster algorithm

Z distribution (in arbitrary units) of charged particles in Au+Au at 400 AMeV central collisions (arbitrarily normalized at Z=1)

summary

conclusions: present elliptic flow result compatible with sub-saturation MSU result not compatible with result from analysis of pion ratios impact-parameter dependence barely consistent within errors

crucial for future experiment: higher statistics measure fragment data for consistency and check of cluster algorithm support background measurement with simulations more precise efficiency of LAND?

UrQMD: impact parameter dependence pion ratios

ultimate goal: theory invariant conclusions

