Isotopic Effects with INDRA@GSI

J. Łukasik,¹ W. Trautmann,² G. Auger,³ M.L. Begemann-Blaich,² N. Bellaize,⁵ R. Bittiger,² F. Bocage,⁵ B. Borderie,⁴ R. Bougault,⁵ B. Bouriquet,³ J.L. Charvet,⁶ A. Chbihi,³ R. Dayras,⁶ D. Durand,⁵ J.D. Frankland,³ E. Galichet,⁷ D. Gourio,² D. Guinet,⁷ S. Hudan,³ B. Hurst,⁵ P. Lautesse,⁷ F. Lavaud,⁴ A. Le Fèvre,² R. Legrain,⁶ O. Lopez,⁵ U. Lynen,² W.F.J. Müller,² L. Nalpas,⁶ H. Orth,² E. Plagnol,⁴ E. Rosato,⁸ A. Saija,⁹ C. Sfienti,² C. Schwarz,² J.C. Steckmeyer,⁵ B. Tamain,⁵ A. Trzciński,¹⁰ K. Turzó,² E. Vient,⁵ M. Vigilante,⁸ C. Volant,⁶ and B. Zwiegliński¹⁰ (The INDRA and ALADIN Collaborations)

¹ IFJ-PAN, Kraków, Poland * ² GSI, Darmstadt, Germany * ³ GANIL, Caen, France * ⁴ IPN, Orsay, France
⁵ LPC, Caen, France * ⁶ DAPNIA, Saclay, France * ⁷ IPN, Lyon, France * ⁸ INFN, Napoli, Italy
⁹ INFN, Catania, Italy * ¹⁰ SINS, Warsaw, Poland

INDRA@GSI:

 124 Xe+ 112 Sn @ 100 AMeV (N/Z=1.27) 129 Xe+ 112 Sn @ 100 AMeV (N/Z=1.32) 124 Xe+ 124 Sn @ 100 AMeV (N/Z=1.38) 129 Xe+ 124 Sn @ 100 AMeV (N/Z=1.43) 124 Xe+ 124 Sn @ 150 AMeV (N/Z=1.38) 129 Xe+ 124 Sn @ 150 AMeV (N/Z=1.43)

Ionization Chamber (96) Csl(Tl) (336) Silicon (192)

Thresholds below mid-rapidity for isotopically resolved light fragments

Fourier decomposition of the azimuthal distributions with respect to the **reaction plane** (ϕ_R) :

$$\frac{dN}{d(\phi - \phi_R)} = \frac{N_0}{2\pi} \left(1 + 2\sum_{n \ge 1} v_n \cos n(\phi - \phi_R) \right)$$
$$v_1 \equiv \langle \cos(\phi - \phi_R) \rangle \quad \text{directed flow}$$
$$v_2 \equiv \langle \cos 2(\phi - \phi_R) \rangle \quad \text{elliptic flow}$$
$$v_n = v_n(b, Z, A, y, p^{\perp})$$

'Q-vector' method for reaction plane estimate (P. Danielewicz and G. Odyniec, Phys. Lett. B 157(1985)146):

$$\vec{Q} = \sum_{i=1}^{N} \omega_i \vec{p}_i^{\perp}, \qquad \omega_i = \operatorname{sign}(y_{cm})$$

$$F_{n-p}^{x}(y) \equiv \frac{1}{N(y)} \sum_{i=1}^{N(y)} p_{i}^{x}(y)\tau_{i} = \frac{N_{n}(y)}{N(y)} \langle p_{n}^{x}(y) \rangle - \frac{N_{p}(y)}{N(y)} \langle p_{p}^{x}(y) \rangle$$

where $N_n(y)$, $N_p(y)$ are the numbers of free neutrons and protons at rapidity y, $N(y) = N_n(y) + N_p(y)$, $p_n^x(y)$ - in-plane transverse momentum, $\tau_i = 1$ (-1) for neutrons (protons).

Modification for isobars $t \equiv (1)$ and ${}^{3}He \equiv (2)$ and v_{1} :

$$v_1^{diff}(y) = \frac{N_{(1)}(y)}{N(y)} \langle v_1^{(1)}(y) \rangle - \frac{N_{(2)}(y)}{N(y)} \langle v_1^{(2)}(y) \rangle$$

N/Z

N/Z

INDRA:

- Tiny isotopic effects for light isotopes (a bit better for heavier)
- Possible evolution with incident energy (small enhancements)
- Small enhancements with increasing p_T cuts
- Production of light isobars sensitive

CHIMERA(QMD):

- Small system size effects
- Similar trends as in the experiment
- Exotic beams (and targets) needed...