Introduction	<i>n</i> & <i>p</i> in Nuclei 000	Half- ∞ Matter	<i>a_a(A</i>) from IAS	Consistency?	Conclusions o

Symmetry Energy in Nuclear Ground State

Pawel Danielewicz and Jenny Lee

Natl Superconducting Cyclotron Lab, Michigan State U

ESF Workshop on How to Constrain High-Density Symmetry-Energy Zagreb, October 16-18, 2009

Outline

Introduction

- 2 n & p in Nuclei
 - Capacitor for Asymmetry
 - Nucleonic Densities
- 3 Half- ∞ Matter
 - Solution of Skyrme-Hartree-Fock Eqs
 - Further Analysis
- 4 $a_a(A)$ from IAS
 - Use of Charge Invariance
 - Data Analysis & Interpretation
 - Look Back at Densities
- 5 Consistency?
- 6 Conclusions

Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only:

 $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only:

 $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

Charge invariance: invariance of nuclear interactions under rotations in *n-p* space

Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under $n \leftrightarrow p$ interchange

An isoscalar quantity *F* does not change under $n \leftrightarrow p$ interchange. E.g. nuclear energy. Expansion in asymmetry $\eta = (N - Z)/A$, for smooth *F*, yields even terms only:

 $F(\eta) = F_0 + F_2 \eta^2 + F_4 \eta^4 + \dots$

An isovector quantity *G* changes sign. Example: $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$. Expansion with odd terms only: $G(\eta) = G_1 \eta + G_3 \eta^3 + \dots$

Note: $G/\eta = G_1 + G_3 \eta^2 + ...$

Charge invariance: invariance of nuclear interactions under rotations in *n*-*p* space

ococ	n & p in Nuclei ●○○	Half-∞ Matter 00000000	a _a (A) from IAS 00000000	Consistency?	o
	Nucleus	as Capac	itor for Asy	vmmetry	
	$E=-a_v$ /	$A + a_s A^{2/3} +$	$\frac{a_a}{A}(N-Z)^2$	Q	Į
	$= E_0(A)$	$)+rac{a_a(A)}{\Delta}(N)$	$(-Z)^{2}$	Ĵ	-1
		$\int \frac{1}{\Omega^2} \left(Q \right)$			\rightarrow
					-
Asyr					
	$=\frac{\partial E}{\partial (N-Z)}=$		$=\frac{2a_{a}(A)}{A}\left(N\right.$	- Z)	
N.L. I	· · · · · · · · · · · · · · · · · · ·	1 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A	1 /		

distributes itself in proportion to capacitance

Note: for connected capacitors, charge (asymmetry) distributes itself *in proportion to capacitance*

Note: for connected capacitors, charge (asymmetry) distributes itself *in proportion to capacitance*

Note: for connected capacitors, charge (asymmetry) distributes itself *in proportion to capacitance*

Half-∞ Matter

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global...Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

n & p in Nuclei

000

$$\rho_{n,p}(r) = \frac{1}{2} \big[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \big]$$

where ho(r) & $ho_a(r)$ have universal features!

Danielewicz & Lee

ミト イヨト 三日 わらの

Half-∞ Matter

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global...Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(\mathbf{r}) \& \rho_a(\mathbf{r})$ weakly depend on η !

In any nucleus:

n & p in Nuclei

000

$$\rho_{n,p}(r) = \frac{1}{2} \big[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \big]$$

where ho(r) & $ho_a(r)$ have universal features!

Half-∞ Matter

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = \frac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

n & p in Nuclei

000

$$\rho_{n,p}(r) = \frac{1}{2} \big[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \big]$$

where ho(r) & $ho_a(r)$ have universal features!

Symmetry Energy

< < >> < </>

Half-∞ Matter

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = rac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

n & p in Nuclei

$$\rho_{n,p}(r) = \frac{1}{2} \big[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \big]$$

where $\rho(r) \& \rho_a(r)$ have universal features!

Introduction

Net density $\rho(r) = \rho_n(r) + \rho_p(r)$ is isoscalar \Rightarrow weakly depends on (N - Z) for given A. [Coulomb suppressed...]

 $\rho_{np}(r) = \rho_n(r) - \rho_p(r)$ isovector but $A \rho_{np}(r)/(N-Z)$ isoscalar! A/(N-Z) normalizing factor global... Similar local normalizing factor, in terms of intense quantities, $2a_a^V/\mu_a$, where $a_a^V \equiv S(\rho_0)$ Asymmetric density (formfactor for isovector density) defined:

$$\rho_a(r) = rac{2a_a^V}{\mu_a} \left[\rho_n(r) - \rho_p(r) \right]$$

Normal matter: $\rho_a = \rho_0$. Both $\rho(r) \& \rho_a(r)$ weakly depend on η !

In any nucleus:

n & p in Nuclei

$$\rho_{n,p}(\mathbf{r}) = \frac{1}{2} \big[\rho(\mathbf{r}) \pm \frac{\mu_a}{2a_a^V} \rho_a(\mathbf{r}) \big]$$

where $\rho(\mathbf{r}) \& \rho_a(\mathbf{r})$ have universal features!

Introduction

	00000000	00000000	000	0
	Nuclear	Densities		
	$\rho_{n,p}(r) = \frac{1}{2} \big[\rho($	$r)\pmrac{\mu_a}{2a_a^V} ho_a(r)$	r)]	
Net isoscalar de	nsity $ ho$ usually p	parameterize	d w/Fermi fund	ction
ho(r) =	$\frac{\rho_0}{1 + \exp(\frac{r-R}{d})}$	with R	$= r_0 A^{1/3}$	
Isovector density	ι ρ _a ?? Rel	ated to <i>a_a(A</i>) & to <i>S</i> (<i>ρ</i>)!	
$2C \equiv \frac{A}{a_a(A)}$	$=rac{2(N-Z)}{\mu_a}=$		$=rac{1}{a_a^V}\int \mathrm{d}r ho_a(r)$	
n&p densities carry	record of $S(\rho)$!	\Longrightarrow Hartre	ee Fack study	of surface

ntroduction	<i>n</i> & <i>p</i> in Nuclei ○○●	Half-∞ Matter oooooooo	<i>a_a(A</i>) from IAS	Consistency?	Conclusions o
		Nuclear	Densities		
		1			

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net isoscalar density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 \, A^{1/3}$$

Isovector density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2 \int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N-Z)} = \frac{2 S(\rho)}{\rho} \rho_{np} \equiv \frac{\rho_{np}}{c(\rho)}$$

 $c(\rho) = \rho/2S(\rho)$ density of capacitance

 $h_{0} = h_{0} = h_{0$

Symmetry Energy

Introduction	n & p in Nuclei	Half- ∞ Matter	a _a (A) from IAS	Consistency?	Conclusio
	000				

Nuclear Densities

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net isoscalar density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Isovector density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2 \int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{2 S(\rho)}{\rho} \rho_{np} \equiv \frac{\rho_{np}}{c(\rho)} \qquad \begin{array}{l} c(\rho) = \rho/2S(\rho) \\ \text{density of capacitance} \end{array}$$

$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)} \propto c(\rho) \qquad \text{asymmetry } \propto \text{capacitance}$$

 h^{0} densities carry record of $S(\rho)! \implies$ Hartree-Fack study of surface

Introduction	n & p in Nuclei	Half- ∞ Matter	a _a (A) from IAS	Consistency?	Conclus
	000				

Nuclear Densities

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net isoscalar density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Isovector density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2 \int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{2 S(\rho)}{\rho} \rho_{np} \equiv \frac{\rho_{np}}{c(\rho)} \qquad \begin{array}{l} c(\rho) = \rho/2S(\rho) \\ \text{density of capacitance} \end{array}$$

$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)} \propto c(\rho) \qquad \text{asymmetry } \propto \text{capacitance}$$

$$n\& p \text{ densities carry record of } S(\rho)! \qquad \Longrightarrow \text{ Hartree-Fack study} \text{ for all } M = 1$$

Introduction	n & p in Nuclei	Half- ∞ Matter	a _a (A) from IAS	Consistency?	Conclu
	000				

Nuclear Densities

$$\rho_{n,p}(r) = \frac{1}{2} \left[\rho(r) \pm \frac{\mu_a}{2a_a^V} \rho_a(r) \right]$$

Net isoscalar density ρ usually parameterized w/Fermi function

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r-R}{d})} \quad \text{with} \quad R = r_0 A^{1/3}$$

Isovector density ρ_a ?? Related to $a_a(A)$ & to $S(\rho)$!

$$2C \equiv \frac{A}{a_a(A)} = \frac{2(N-Z)}{\mu_a} = 2 \int \mathrm{d}r \, \frac{\rho_{np}}{\mu_a} = \frac{1}{a_a^V} \int \mathrm{d}r \, \rho_a(r)$$

In uniform matter

$$\mu_{a} = \frac{\partial E}{\partial (N - Z)} = \frac{2 S(\rho)}{\rho} \rho_{np} \equiv \frac{\rho_{np}}{c(\rho)} \qquad \begin{array}{l} c(\rho) = \rho/2S(\rho) \\ \text{density of capacitance} \end{array}$$

$$\Rightarrow \quad \rho_{a} = \frac{2a_{a}^{V}}{\mu_{a}} \rho_{np} = \frac{a_{a}^{V} \rho}{S(\rho)} \propto c(\rho) \qquad \text{asymmetry } \propto \text{capacitance}$$

Symmetry Energy

n&

Half-Infinite Matter in Skyrme-Hartree-Fock To one side infinite uniform matter & vacuum to the other

Discretization in k-space. Set of 1D HF eqs solved until self-consistency for different Skyrme interactions:

$$-\frac{\mathsf{d}}{\mathsf{d}z}\frac{\hbar^2}{2m^*(z)}\frac{\mathsf{d}}{\mathsf{d}z}\phi(z) + \left(\frac{\hbar^2\,k_\perp^2}{2m^*(z)} + U(z)\right)\phi(z) = \epsilon(\mathbf{k})\,\phi(z)$$

PD&Lee NP818(09)36

n & p in Nuclei

matter interior/exterior: $\phi(z) \propto \sin(k_z z + \delta(\mathbf{k}))$

 $\phi(z) \propto \mathrm{e}^{-\kappa(\mathbf{k})z}$

Half-∞ Matter 0000000

Danielewicz & Lee

Introduction	<i>n</i> & <i>p</i> in Nucl	ei Half-∞ ○○○○○	Matter ●○○	<i>a_a(A)</i> from IAS	Consistency?	Conclusions o			
WKB Analysis									
Semicla	assical ,	(-)	$\sin\left(\int_{z}^{z}$	$k_z(z')\mathrm{d} z')$	allowed	<i>z</i> < <i>z</i> ₀			
wavefunction	nction ϕ	$\mathbf{k}^{\infty}(\mathbf{Z}) \propto \left\{ \left\{ \right. \right.$	exp(-	$\int_{z_0}^z \kappa_z(z') \mathrm{d} z' \big)$	forbidden	$z > z_0$			

Density from
$$\rho_{\alpha}(z) = \int d\mathbf{k}^{\infty} |\phi_{\mathbf{k}^{\infty}\alpha}(z)|^2$$
, classical return pt z_0

Findings:

$$\mathrm{t} \; z < z_0 \qquad \qquad
ho_a(z) pprox rac{a_a^V \;
ho}{S(
ho)} ig(1 + rac{
ho^{2/3}}{S(
ho)} \, \mathcal{F}ig)$$

where $\mathcal{F}(z) \propto \sin(2k_F(z_0 - z))$, describing Friedel oscillations around ρ/S

Introduction	<i>n</i> & <i>p</i> in N 000	uclei Half-o 0000	o Matter ○●○○	<i>a_a(A</i>) from IAS ೦೦೦೦೦೦೦೦	Consistency?	Conclusions o			
WKB Analysis									
Semicla	assical		$\int \sin \left(\int_{z} \right)$	$k_z(z')\mathrm{d} z')$	allowed	<i>z</i> < <i>z</i> ₀			
wavefunction	$\phi_{\mathbf{k}^{\infty}}(\mathbf{Z}) \propto \langle$	exp(-	$\int_{Z_0}^{z} \kappa_z(z') \mathrm{d}z' \big)$	forbidden	$z > z_0$				

Density from
$$\rho_{\alpha}(z) = \int d\mathbf{k}^{\infty} |\phi_{\mathbf{k}^{\infty}\alpha}(z)|^2$$
, classical return pt z_0

Findings:

At
$$z < z_0$$
 $\rho_a(z) \approx rac{a_a^V \rho}{S(\rho)} \big(1 + rac{
ho^{2/3}}{S(\rho)} \, \mathcal{F} \big)$

where $\mathcal{F}(z) \propto \sin(2k_F(z_0 - z))$, describing Friedel oscillations around ρ/S .

3

Introduction	<i>n</i> & <i>p</i> in Ni 000	uclei H	lalf-∞ Matt ○○○○○●○	er á	a _a (A) from IAS	Co: 00	nsistency? o	Conclusions o	
Skyrme Parameters									
Name	a_V	m^*/m	K	a_a^V	L	a_S	a_a^S	ΔR	
SkT	-15.40	0.602	333	24.8	28.2	14.2	17.5	0.477	
SkT1	-15.98	1.000	236	32.0	56.2	18.2	14.6	0.799	
SkT2	-15.94	1.000	235	32.0	56.2	18.0	14.7	0.794	
SkT3	-15.94	1.000	235	31.5	55.3	17.7	15.3	0.776	
SkT4	-15.95	1.000	235	35.4	94.1	18.1	11.5	0.986	
SkT5	-16.00	1.000	201	37.0	98.5	18.1	10.9	1.084	
SkM1	-15.77	0.789	216	25.1	-35.3	17.4	59.6	0.180	
Skl1	-15.95	0.693	242	37.5	161.0	17.4	11.4	1.126	
Gσ	-15.59	0.784	237	31.3	94.0	16.0	10.1	0.929	
$R\sigma$	-15.59	0.783	237	30.5	85.7	16.0	10.5	0.888	
Т	-15.93	1.000	235	28.3	27.2	17.7	22.6	0.587	
Z	-15.97	0.842	330	26.8	-49.7	17.7	51.5	0.213	
Zσ	-15.88	0.783	233	26.6	-29.3	17.0	46.6	0.233	
$Z\sigma\sigma$	-15.96	0.775	234	28.8	-4.5	17.3	29.3	0.406	

< ロ> < 団> < 三> < 三> < 三
 < 回> < 回> < < ○

Charge Invariance

? $a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space

sym energy

$$a_{a} = a_{a}(A) \frac{(N-Z)^{2}}{A} = 4 a_{a}(A) \frac{T_{z}^{2}}{A}$$

 $\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{T(T+1)}$

Charge Invariance

? $a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy

$$T_a = a_a(A) \frac{(N-Z)^2}{A} = 4 a_a(A) \frac{T_z^2}{A}$$

 $\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{T(T+1)}$

Charge Invariance

? $a_a(A)$? Conclusions on sym-energy details, following *E*-formula fits, interrelated with conclusions on other terms in the formula: asymmetry-dependent Coulomb, Wigner & pairing + asymmetry-independent, due to (N - Z)/A - A correlations along stability line [PD NPA727(03)233]!

Best would be to study the symmetry energy in isolation from the rest of *E*-formula! Absurd?!

Charge invariance to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

sym energy

$$\Xi_a = a_a(A) \, \frac{(N-Z)^2}{A} = 4 \, a_a(A) \, \frac{T_z^2}{A}$$

$$\rightarrow E_a = 4 a_a(A) \frac{T^2}{A} = 4 a_a(A) \frac{T(T+1)}{A}$$

In the ground state *T* takes on the lowest possible value $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T (e.g. Jänecke *et al.*, NPA728(03)23). Pairing depends on evenness of T. ?Lowest state of a given T: isobaric analogue state (IAS) of some neighboring nucleus ground-state.

Study of changes in the symmetry term possible nucleus by nucleus

Introduction	n & p in Nuclei	Half- ∞ Matter	a _a (A) from IAS	Consistency?	Conclusions
			0000000		

IAS Data Analysis

In the same nucleus:

$$E_{2}(T_{2}) - E_{1}(T_{1}) = \frac{4 a_{a}}{A} \{ T_{2}(T_{2} + 1) - T_{1}(T_{1} + 1) \} + E_{\text{mic}}(T_{2}, T_{z}) - E_{\text{mic}}(T_{2}, T_{z}) \}$$

$$a_a^{-1}(A) = rac{4 \,\Delta T^2}{A \,\Delta E} \qquad \stackrel{?}{=} (a_a^V)^{-1} + (a_a^S)^{-1} \,A^{-1/3}$$

Data: Antony et al. ADNDT66(97)1

*E*_{mic}: Koura *et al.*, ProTheoPhys113(05)305 v Groote *et al.*, AtDatNucDatTab17(76)418 Moller *et al.*, AtDatNucDatTab59(95)185

Symbol size proportional to relative significance. \sim Linear dependance from $A \gtrsim 20$ on.

▶ < Ξ

< E

0.3

 $A^{-1/3}$

0.4

0.5

0.2

0.04

0.0

0.1

25 30

▶ < Ξ

0.6

Spherical SHF: Do you get out what you put in? Coefficient-extraction from spherical SHF results for realistic (blue) and humongous (green) (up to $A \sim 10^6$) nuclei, using P.-G. Reinhard's codes

Nuclei in Nature too small for clean surface/volume separation! Consequence: a_a^V a bit smaller, a_a^S a bit larger and *L* a bit lower than from the simple analysis.

Symmetry Energy

Spherical SHF: Do you get out what you put in? Coefficient-extraction from spherical SHF results for realistic (blue) and humongous (green) (up to $A \sim 10^6$) nuclei, using P.-G. Reinhard's codes

Nuclei in Nature too small for clean surface/volume separation! Consequence: a_a^V a bit smaller, a_a^S a bit larger and *L* a bit lower than from the simple analysis.

Symmetry Energy

Outlier Skyrme Interactions

For some Skyrme interactions, the deviations between the known symmetry coefficients, a_a^V and a_a^S , and those deduced from $a_a(A)$, for 20 < A < 240, are dramatic:

The large deviations appear to be related to instabilities of the interactions and/or excessive nonlocalities.

Deviations vs Skyrme Characteristics

Long-wavelength stability for the Skyrme interactions: Dimensionless Landau parameters must satisfy $L_0 > -1$. Nonlocality in symmetry energy: $\mathcal{H} = \ldots + \zeta (\nabla \rho_{np})^2$.

Discrepancies, between what is put in and what is taken out, appear to be largely related to objectively unphysical properties

troduction n & p in Nuclei Half- ∞ Matter $a_a(A)$ from IAS Consistency? Conclusions

Conclusions

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of $S(\rho)$.
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, a^V_a/a^S_a ≤ 3.0. Corresponding L ≤ 95 MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_ρ(r)

Half-∞ Matter

n & p in Nuclei

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of S(ρ).
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, a^V_a/a^S_a ≤ 3.0. Corresponding L ≤ 95 MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_ρ(r)

Conclusions

Half-∞ Matter

n & p in Nuclei

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of S(ρ).
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, $a_a^V/a_a^S \lesssim 3.0$. Corresponding $L \lesssim 95$ MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_ρ(r)

Conclusions

Half-∞ Matter

n & p in Nuclei

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of S(ρ).
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, $a_a^V/a_a^S \lesssim 3.0$. Corresponding $L \lesssim 95$ MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_ρ(r)

Conclusions

Half-∞ Matter

n & p in Nuclei

Introduction

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of S(ρ).
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, $a_a^V/a_a^S \lesssim 3.0$. Corresponding $L \lesssim 95$ MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_p(r)

Conclusions

Half-∞ Matter

n & p in Nuclei

Introduction

- Symmetry-energy term weakens as nuclear mass number decreases: for $A \gtrsim 20$, $a_a(A) \simeq a_a^V/(1 + a_a^V/a_a^S A^{1/3})$, where $a_a^V = (31.5 33.5)$ MeV, $a_a^S = (9.5 12)$ MeV.
- Weakening of the symmetry term is tied to the asymmetry skins and to the shape of S(ρ).
- Skin sizes in all nuclei quantifiable in terms of single ratio, already known, $a_a^V/a_a^S \lesssim 3.0$. Corresponding $L \lesssim 95$ MeV.
- Systematic of proton densities for one A should principally contain as much info as the skins and even more.
- 2 fundamental densities characterize nucleon distributions: isoscalar & isovector. Density surfaces are displaced from each other by $\Delta R \lesssim 0.95$ fm and have different diffusenesses, $d \sim 0.54$ fm and $d_a \sim 0.40$ fm.
- Outlook: interaction stability, Coulomb, shell & deformation effects, learning on finer S(ρ)-details from ρ_p(r)

Conclusions

Density Tails

Two Skyrme interactions + different asymmetries

ヨト くヨト

Modified Binding Formula

$${\it E} = -a_V\,{\it A} + a_S\,{\it A}^{2/3} + a_C\,rac{Z^2}{{\it A}^{1/3}} + rac{a_a^V}{1+{\it A}^{-1/3}\,a_a^V/a_a^S}\,rac{(N-Z)^2}{{\it A}}$$

Energy Formula Performance: Fit residuals f/light asymmetric nuclei, either following the Bethe-Weizsäcker formula (open symbols) or the modified formula with $a_a^V/a_a^S = 2.8$ imposed (closed), i.e. the same parameter No.

Droplet Model Droplet model (Myers & Swiatecki '69) $E = \left(-a_1 + J\overline{\delta}^2 - \frac{1}{2}K\overline{\epsilon}^2 + \frac{1}{2}M\overline{\delta}^4\right)A + \left(a_2 + Q\tau^2 + a_3A^{-1/3}\right)A^{2/3} + c_1\frac{Z^2}{A^{1/3}}\left(1 + \frac{1}{2}\tau A^{-1/3}\right) - c_2Z^2A^{1/3} - c_3\frac{Z^2}{A} - c_4\frac{Z^{4/3}}{A^{1/3}}$

where

$$\overline{\epsilon} = \frac{1}{K} \left(-2a_2 A^{-1/3} + L \overline{\delta}^2 + c_1 \frac{Z^2}{A^{4/3}} \right) , \qquad \tau = \frac{3}{2} \frac{J}{Q} \left(\overline{\delta} + \overline{\delta}_s \right)$$

$$\overline{\delta} = \frac{I + \frac{3}{8} \frac{c_1}{Q} \frac{Z^2}{A^{5/3}}}{1 + \frac{9}{4} \frac{J}{Q} A^{-1/3}}, \qquad \overline{\delta}_s = -\frac{c_1}{12J} \frac{Z}{A^{1/3}}, \qquad I = \frac{N - Z}{N + Z}$$

 $Q = H/(1 - \frac{2}{3}P/J)$. Expansion in asymmetry yields results consistent with current, but approach more complex.

Liquid Drop Model

The current formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A^V \frac{(N-Z)^2}{A} \frac{1}{1 + \frac{a_A^V}{a_A^S} A^{-1/3}}$$

Liquid drop model [LDM] (Myers & Swiatecki '66)

$$E = -a_V \left(1 - \kappa_V l^2\right) A + a_S \left(1 - \kappa_S l^2\right) A^{2/3} + a_C \frac{Z^2}{A^{1/3}} - a_4 \frac{Z^2}{A}$$

with I = (N - Z)/A. LDM corresponds to the expansion in the current formula:

$$\frac{1}{\frac{A}{a_A^V} + \frac{A^{2/3}}{a_A^S}} \simeq \frac{a_A^V}{A} \left(1 - \frac{a_A^V}{a_A^S} A^{-1/3}\right)$$

But that expansion only accurate for $A \gtrsim 1000$, i.e. never!

Analytic Expression for Skin Size

Skin Sizes for Sn & Pb Isotopes

Lines - formula predictions, PD NPA727(03)233

Favored ratio $a_a^V/a_a^S \simeq 32.5/10.8 \simeq 3.0$

Comparison with Droplet-Model Values

▶ < Ξ