



R.BOUGAULT, INDRA/FAZIA COLLABORATION



### NUCLEAR EQUATION OF STATE

The largest uncertainties on the nuclear energy-density functional concern the SYMMETRY potential part.



### WITH THE HELP OF H.I. COLLISIONS

#### Measure the Density Dependence of the Symmetry Energy EXOTIC NUCLEI – Data/Models



#### Adapted from H.Wolter, IWM2007

<u>WITH THE HELP OF H.I. COLLISIONS</u>

Measure the Density Dependence of the Symmetry Energy

### ONE OF A MAJOR PROBLEM IS RELATED TO



### Solutions:

 taking ratios amplifies the signals and (partially) cancels secondary evaporation
Use very exotic beams

FAZIA simulation group: P.Napolitani et al, in preparation

### <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV



**STUDY OF THE "CHEMISTRY" IN THE FORWARD PART OF c.m** [good detection] and preliminary results of STOCHASTIC MEAN FIELD TRANSPORT MODEL (SMF<sup>\*</sup>)

Work in progress, preliminary

\*(Phys.Rep. 410 (2005) 335-466)



IN THE FORWARD PART OF c.m → "QP-side"

### <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV







### <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV





#### **MEASURE OF THE IMPACT PARAMETER**





#### **MEASURE OF THE IMPACT PARAMETER**

### INDRA@GANIL EXPERIMENT <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV



### INDRA@GANIL EXPERIMENT <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV







### <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV

Xe+Sn 32 A.MeV



MEASURE OF THE IMPACT PARAMETER



### <sup>136,124</sup>Xe + <sup>124,112</sup>Sn 32 A.MeV





# with E.Galichet and M.Colonna

To be continued

This part is impossible to compare with SMF (neutron) "Et of Icp" for b

#### SMF iso-Stiff primary fragments PRELIMINARY



Within 2/3 years a demonstrator will be running coupled with existing multidetectors





Identify ions stopped in ONE silicon detector low id. thresholds



"Channeled"

"Random"

..............







#### **IMPROVEMENT IN SIGNAL DISPERSION**

non-homogeneity in the electric field inside the detector (doping) may have a severe impact over the Pulse Shape Discrimination capabilities:



### A <u>very good</u> detector: ~1% nonuniformity



#### **IMPROVEMENT IN DOPING UNIFORMITY**

#### 14 bit, 100 MS/s digitizer

### IONS STOPPED IN ONE DETECTOR



leneindre@lpccaen.in2p3.f



