Constraining E_{sym} from Astrophysics of Compact Stars

ESF Exploratory Workshop; Zagreb, October 2007

David Blaschke

Institute for Theoretical Physics, University Wroclaw, Poland blaschke@ift.uni.wroc.pl

Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

T. Klähn, E.N.E. van Dalen, A. Faessler, C. Fuchs, T. Gaitanos, H. Grigorian, A. Ho, E.E. Kolomeitsev, M.C. Miller, S. Popov, G. Röpke, F. Sandin, J. Trümper, S. Typel, D.N. Voskresensky, F. Weber, H.H. Wolter

Exploring the Phase Diagram

Outline

- ➤ High Density EoS Test Scheme
 - ★ NS Maximum Mass
 - ★ NS Mass-Radius relation
 - ★ NS Gravitational binding
 - $\star~$ Flow in HIC
 - ★ Cooling (direct Urca, Vela mass, logN-logS)
- Nuclear Matter EoS
- ►> Test Scheme vs. Nuclear Matter
- Superconducting Quark Matter and Phase Transition
- ►> Test scheme vs. Quark-Nuclear Matter
- ► Consequences for the Phase Diagram
- ➤ Conclusions

Compact Star Masses (1σ)

binary radio pulsars: $M_{BRP} = 1.35 \pm 0.04 M_{\odot}$

PSR J1903+0327

(P. Freire et al., arxiv:09... [astro-ph])

 $M = 1.67 \pm 0.01 M_{\odot}$

 \rightarrow constrains minimal maximum mass

of an EoS model

J. M. Lattimer and M. Prakash Phys. Rev. Lett. 94, 111101 (2005)

Mass-Radius Constraints from QPO's

 $\nu_{max} \approx \nu_{orbit} < \nu_{ISCO}$

Keplerian Orbit r_K $R < r_k = (GM/4\pi^2 \nu_{max}^2)^{1/3} \to R_{max}(M)$ $M < 2.2M_{\odot}(1000Hz/\nu_{max})(1+0.75j) \to M_{max}$ $M \approx 2.2M_{\odot}(1000Hz/\nu_{max})(1+0.75j)$

if(!) $\nu_{max} \approx \nu_{ISCO}$

M. van der Klies, ARA&A 38, 717 (2000)

M-R Constraint from Radio Quiet Isolated NS RXJ1856

RXJ1856 black body spectrum: $T_{\infty} = 57 \text{ eV}$ measurement of distance:60 pc (2002)

 \rightarrow photospheric radius:

Mass Radius Constraints						
QPO	: M-R upper limits					
ISCO	: max. mass constraint					
RXJ185	6: M-R lower limits					

each region...

- \rightarrow represents a different object
- \rightarrow should be touched at least once
- J. Trümper et al., Nucl. Phys. Proc. Suppl. 132, 560 (2004)

D. Barret, J.-F. Olive, M.C. Miller, Mon. Not. Roy. Astron. Soc. 361, 855 (2005)

Gravitational Mass \leftrightarrow **Baryon Number J0737-3039**

Double Pulsar System J0737-3039

Pulsar A $P^{(A)} = 22.7 \text{ ms}, M^{(A)} \approx 1.338 M_{\odot}$

Pulsar B $P^{(B)} = 2.77 \text{ s}, M^{(B)} = 1.249 \pm 0.001 M_{\odot} \text{ (record!)}$

Progenitor ONeMg white dwarf, driven hydrodyn. unstable by

 e^- captures on Mg & Ne; no mass-loss during collapse

Observational constraint for $M(M_N)$ from PSR J0737-3039:

- observed NSs gravitational mass (remnant star) $M^{(B)} = 1.248 1.250 M_{\odot}$
- critical baryon mass for ONeMg white dwarf

Theory: $M(M_N)$ characteristic for remnants EoS $M = 4\pi \int_0^R dr r^2 \varepsilon(r)$; $M_N = uN_B = 4\pi u \int_0^R dr \frac{r^2 n(r)}{\sqrt{1-2GM(r)/r}}$ (conversion of baryon number to mass by u = 931.5 MeV)

P. Podsiadlowski et al., Mon. Not. Roy. Astron. Soc. 361, 1243 (2005)

 $M_N^{(B)} = 1.366 - 1.375 M_{\odot}$

Direct Urca Process: $n \rightarrow p + e^- + \bar{\nu}_e$ (β - decay)

NS cooling – different masses

Constraints on hadronic EoS - p.8

Direct Urca Process: $n \rightarrow p + e^- + \bar{\nu}_e$

new test of cooling theory:

- mass population from cooling D.B., Grigorian, PPNP (2007) astro-ph/0612092
- NS mass population synthesis
 Popov et al., A&A 448, 327 (2006)

problems with hadronic cooling:

- ➤ "population clustering" at DU onset
- too many "heavy" stars required
 Vela mass problem

Elliptic Flow in HIC

P. Danielewicz et al., Science 298, 1592 (2002)

Flow data constrain EoS up to $n \approx 4n_0$

 \rightarrow finite range of possible P(n) for given n

Nuclear Matter Equations of State (EoS)

Several approaches to describe dense nuclear matter

► Equations of State at T = 0

$$\varepsilon(n_n, n_p, n_e, n_\mu) \to \varepsilon_h(n_n, n_p) + \sum_{e,\mu} \varepsilon_i(n_i),$$

$$\mu_i = \frac{\mathrm{d}\varepsilon}{\mathrm{d}n_i}, P = \sum_{n,p,e,\mu} \mu_i n_i - \varepsilon_h - \varepsilon_l$$

→ expanding binding energy per particle in terms of isospin asymmetry $\beta = \frac{n_n - n_p}{n_n + n_p} = 1 - 2x_p, \ n = n_n + n_p$

$$E(n,\beta) = E_0(n) + \beta^2 E_S(n)$$

➤ Thermodynamical Identities hold in SNM and NSM

Nuclear Matter Equations of State (EoS)

$=E_0(n)$	$(z) + \beta^2 E_{\beta}$	$S(n) \approx a_V$	$r + \frac{K}{18}\epsilon^2$	$-\frac{\kappa}{162}\epsilon^3$	++	$\beta^2 \left(J + \right)$	$-\frac{L}{3}\epsilon+\ldots$
	$\epsilon = (n - 1)$	$n_{sat})/n$		$\beta = (n_n)$	$(-n_{p})/($	$n_n + n_p$)
Model	$n_{ m sat}$	a_V	K	K'	J	L	m_D/m
	$[fm^{-3}]$	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]	
NL ho	0.1459	-16.062	203.3	576.5	30.8	83.1	0.603
$NL ho\delta$	0.1459	-16.062	203.3	576.5	31.0	92.3	0.603
DBHF	0.1779	-16.160	201.6	507.9	33.7	69.4	0.684
DD	0.1487	-16.021	240.0	-134.6	32.0	56.0	0.565
D^3C	0.1510	-15.981	232.5	-716.8	31.9	59.3	0.541
KVR	0.1600	-15.800	250.0	528.8	28.8	55.8	0.800
KVOR	0.1600	-16.000	275.0	422.8	32.9	73.6	0.800
DD-F	0.1469	-16.024	223.1	757.8	31.6	56.0	0.556
$\int_{20}^{0} \int_{-20}^{0} \int_{0}^{1} \int_{-20}^{1} \int_{0}^{1} \int_{0}^{1}$							

Direct Urca Process

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

▶ no muons: $x_{DU} = 11.1\%$

► relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

NL ρ , NL $\rho\delta$, DBHF : DU occurs below 2.5 n_0

Direct Urca Process

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, same for muons: $e \leftrightarrow \mu$ charge neutrality: $n_p = n_e + n_\mu$, i.e. $p_p^3 = p_e^3 + p_\mu^3$ results in

$$x_p \ge x_{DU}(x_e) = [1 + (1 + x_e^{1/3})^3]^{-1}$$
 $x_e = n_e/(n_e + n_\mu)$

no muons:

$$x_{DU} = 11.1\%$$

► relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

Mass Radius Relations

 \rightarrow agreement with all mass and mass-radius constraints for DBHF, DD, D³C

Gravitational Binding $M(M_N)$ for J0737-3039 (B)

 \rightarrow applicability depends on level of baryon loss during collapse

Flow Constraint

 \rightarrow constraint fulfilled for NL ρ , NL $\rho\delta$, KVR, KVOR, DD-F; DBHF at low densities

Consequences: Universality conjecture for $\beta^2 E_S(n)$

Exclude NL ρ , NL $\rho\delta$, DBHF since DU constraint violated ($M_{DU} < M_{typ}$) \rightarrow universal $\beta^2 E_S$

Universality conjecture for $\beta^2 E_S(n)$

$$\frac{\mathrm{d}}{\mathrm{d}x}(1-2x)^2 E_S(n,x)|_{x=x_c} = (an)^{1/3} \left\{ \frac{1}{3}x^{-2/3} - \frac{8}{3}x^{1/3} \right\} \Big|_{x=x_c} = 0 \,, \quad \to \quad x_c = \frac{1}{8}$$

T. Klähn, D.B., J. Lattimer, in preparation

Consequences: Sharpening the Flow Constraint

How strong is the flow constraint?

LB not reliable \leftrightarrow Maximum mass constraint demands stiff EoS

(applied "universal" $\beta^2 E_S$ (error bars!))

Result

Model	$M_{ m max} \ge$ 1.9 M_{\odot}	$M_{ m max} \ge$ 1.6 M_{\odot}	$M_{ m DU} \ge$ 1.5 M_{\odot}	$M_{ m DU} \ge$ 1.35 M_{\odot}	4U 1636-536 (u)	4U 1636-536 (I)	RX J1856 (A)	RX J1856 (B)	J0737 (no loss)	J0737 (loss 1% M_{\odot})	SIS+AGS flow constr.	SIS flow+ K^+ constr.	No. of passed strong tests	No. of passed weak tests
NL ho	-	+	_	—	—	—	—	—	_	—	+	+	1	2
$NL ho\delta$	_	+	_	—	_	—	_	—	_	—	+	+	1	2
DBHF	+	+	_	_	+	+	—	+	_	+	_	+	2	5
DD	+	+	+	+	+	+	_	+	—	—	_	_	3	4
D^3C	+	+	+	+	+	+	_	+	_	—	_	_	3	4
KVR	0	+	+	+	_	0	_	_	_	+	+	+	3	5
KVOR	+	+	+	+	—	+	—	_	—	0	+	+	3	5
DD-F	+	+	+	+	_	+	—	_	_	+	+	+	3	5
Complementary scheme with strong (left columns) and weak (right columns) constraints									ts					
Favourite EsoS: DBHF, KVR, KVOR, DD-F; None passes all constraints !														

Cluster formation in low-density nuclear matter

- ➤ RMF and Quantum Statistics (Pauli blocking) combined to describe formation and dissolution of clusters in warm, dilute nuclear matter (→ supernova and HIC applications).
- ▶ Important contribution to $E_{sym}(n)$ at low densities; Prediction of high-density behavior
- S. Typel, G. Röpke, T. Klähn, D.B., H. Wolter, arxiv:0908234 [nucl-th]; J. Natowitz et al., in prep.

Quark Matter EoS: NJL-type Model

$$S[\bar{\psi},\psi] = \sum_{p} \bar{\psi}(\not{p} - \hat{m})\psi$$

+ $\sum_{p,p'} \left[(\bar{\psi}g(p)\psi)G_{S}(\bar{\psi}g(p')\psi) + (\bar{\psi}i\gamma_{0}g(p)\psi)G_{V}(\bar{\psi}i\gamma_{0}g(p')\psi) + (\bar{\psi}i\gamma_{5}\tau_{2}\lambda_{2}Cg(p)\bar{\psi}^{T})G_{D}(\psi^{T}Ci\gamma_{5}\tau_{2}\lambda_{2}g(p')\psi) \right],$

Bosonization (Hubbard-Stratonovich trick) \rightarrow Mean-field approximation

 $\Omega_q(\phi,\omega_0,\Delta;\mu_u,\mu_d,T) = \frac{\phi^2}{4G_S} + \frac{|\Delta|^2}{4G_D} + \frac{\omega_0^2}{4G_V} - T\sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \operatorname{Tr} \ln\left(\frac{1}{T}\tilde{S}^{-1}(i\omega_n,\vec{p})\right)$ Nambu-Gorkov Propagator

$$\tilde{S}^{-1}(p_0, \vec{p}) = \begin{pmatrix} \not p - \hat{M}(p) - \hat{\mu}\gamma_0 & \Delta\gamma_5\tau_2\lambda_2 g(p) \\ -\Delta^*\gamma_5\tau_2\lambda_2 g(p) & \not p - \hat{M}(p) + \hat{\mu}\gamma_0 \end{pmatrix}$$

Dynamical quark mass matrix (NJL: $g(p) = \Theta(\Lambda - |p|)$

$$\hat{M}(p) = \operatorname{diag}(m_u + \phi g(p), m_d + \phi g(p))$$

Renormalized chemical potential matrix

$$\hat{\mu} = \operatorname{diag}(\mu_u - \omega_0, \mu_d - \omega_0)$$

Nonlocal, Chiral Quark Model (MF)

→ chiral gaps (constituent quark mass $m_i = m_i^0 + \phi_i$)

$$\phi_i = -4G_S \langle\!\langle \bar{q}_i q_i \rangle\!\rangle$$

➤ diquark gaps

$$\Delta_{k\gamma} = 2G_D \langle\!\langle \bar{q}_{i\alpha} i\gamma_5 \epsilon_{\alpha\beta\gamma} \epsilon_{ijk} q_{j\beta}^C \rangle\!\rangle$$

1. NQ:
$$\Delta_{ud} = \Delta_{us} = \Delta_{ds} = 0$$
;
2. NQ-2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$ (0< χ_{2SC} <1);
3. 2SC: $\Delta_{ud} \neq 0$, $\Delta_{us} = \Delta_{ds} = 0$;
4. uSC: $\Delta_{ud} \neq 0$, $\Delta_{us} \neq 0$, $\Delta_{ds} = 0$;
5. CFL: $\Delta_{ud} \neq 0$, $\Delta_{ds} \neq 0$, $\Delta_{us} \neq 0$;

Quark Matter Phase Diagram (NJL case)

Blaschke et al, PRD 72 (2005) 065020 Rüster et al., PRD 72 (2005) 034004 Abuki+Kunihiro, NPA 768 (2006) 118

self-consistent strange quark masses !

Phase Transition to Quark Matter

►> traditional: two-phase construction

- "masquerade" problem: quark and hadron eos almost identical!
- challenge: hadrons as quark bound states; Beth-Uhlenbeck + Mott-effect

Phase Transition to Quark Matter

- Large Mass (~ 2 M_☉) and radius (R ≥ 12 km) ⇒ stiff quark matter EoS; Note: DU problem of DBHF removed by deconfinement! and: CFL core Hybrids unstable!
- Flow in Heavy-Ion Collisions ⇒ not too stiff EoS ! Note: Quark matter removes violation by DBHF at high densities
- T. Klähn et al., PLB 654, 170 (2007); [nucl-th/0609067]

Hybrid Star Cooling with 2SC Quark Matter

2SC phase: 1 color (blue) is unpaired

(mixed superconductivity)

Ansatz 2SC + X phase:

 $\Delta_X(\mu) = \Delta_0 \exp[\alpha(1 - \mu/\mu_c)]$

Model	Δ_0 [MeV]	lpha
I	1	10
II	0.1	0
III	0.1	2
IV	5	25

Popov, Grigorian, D.B., PRC 74 (2006)

Pairing gaps for hadronic phase

(Takatsuka, Tamagaki, A&A (2004))

and 2SC + X phase

Hybrid Star Cooling with 2SC Quark Matter (II)

2SC + X phase, $\Delta_0 = 1$ MeV, $\alpha = 10$

Too large mass for Vela required Popov, Grigorian, D.B., PRC 74 (2006) Log N - Log S test fails

Hybrid Star Cooling with 2SC Quark Matter (III)

2SC + X phase, $\Delta_0 = 5$ MeV, $\alpha = 25$

Temperature-age and Vela mass OK Popov, Grigorian, D.B., PRC 74 (2006) Log N - Log S test passed

Hybrid Star Cooling with 2SC Quark Matter (IV)

Hybrid star passes all modern cooling tests:

- \odot Temperature age
- \odot Log N Log S
- ⊙ Brightness constraint
- \odot Vela mass

Popov, Grigorian, D.B., PRC 74 (2006) D.B., H. Grigorian, PPNP (2007) astro-ph/0612092

Phase diagram, symmetric matter

Summary

- ➤ High density EoS testing scheme
 - \star set of constraints from HIC flow and new astrophysical observations
 - * complementary tests for $E_0(n)$ and $E_S(n)$; cooling !
- Present-day conclusions
 - * $E_S(n)$: "soft" (cooling, direct Urca) $\rightarrow \beta^2 E_S(n)$ universal
 - * $E_0(n)$: "soft" for $n < n_c$ (flow data); "stiff" for $n > n_c$ (star masses)
 - \star deconfinement can solve stiffness and DU cooling problems
 - ★ phase diagram for CBM: very weak 1st order transition, early onset!
- ➤ Outlook
 - * implementation of new astrophysical data (e.g. population statistics)
 - $\star\,$ discussion of hyperons and hadronic resonances
 - ★ QM beyond mean-field: hadronic bound and scattering states

unique approach to EoS & phase transition

Collaborators

- Scheme Development: H. Grigorian, T. Klähn, G. Röpke
- ►→ Equations of State
- NLρ, NLρδ
 T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco, H.H. Wolter
 Nucl. Phys. A**732**, 24-48 (2004)
 DBHF
 E.N.E. van Dalen, C. Fuchs, A. Faessler
 - Nucl. Phys. A**744**, 227-248 (2004)
- DD, D 3 C, DD-F S. Typel

Phys. Rev. C71, 064301 (2005)

KVR, KVOR E.E Kolomeitsev, D.N.Voskresensky

Nucl. Phys. A759, 373 (2005)

NJL F. Sandin

Phys. Rev. D72, 065020 (2005)

- ► Cooling: H. Grigorian, S. Popov, D. Voskresensky
- ► Astrophysical Expertise: M.C. Miller, J. Trümper, A. Ho, F. Weber

►→ Supported by

- * DFG, BMBF, Helmholtz Gemeinschaft VH-VI-041 (Germany)
- * US DoE, NSF, Research Corporation, Goddard Space Flight Center (USA)

Advertisement: ESF RNP "CompStar" (2008-2013)

